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Abstract
The EL family of description logics (DLs) has been designed
to provide a restricted syntax for commonly used DL con-
structors with the goal to guarantee polynomial complexity
of reasoning. Yet, polynomial complexity does not always
mean that the underlying reasoning procedure is efficient in
practice. In this paper we consider a simple DL ELO from
the EL family that admits nominals, and argue that existing
polynomial reasoning procedures for ELO can be impracti-
cal for many realistic ontologies. To solve the problem, we
describe an optimization strategy in which the inference rules
required for reasoning with nominals are avoided as much as
possible. The optimized procedure is evaluated within the
reasoner ELK and demonstrated to perform well in practice.

Introduction
Description logics (DLs) have been remarkably successful
in many applications of knowledge representation and rea-
soning. Reasoning in DLs, however, often is of very high
worst-case complexity, motivating the study of smaller log-
ics that allow for polynomial time algorithms for major rea-
soning tasks. A prominent result of this research was the
DL ELwhich is already expressive enough for the important
medical ontology SNOMED CT. The theoretical advantage
of polynomial complexity could also be exploited in prac-
tice, leading to dedicated reasoners that show excellent per-
formance on SNOMED CT, including CEL (Baader, Lutz,
and Suntisrivaraporn 2006), Snorocket (Lawley and Bous-
quet 2010), jCEL (Mendez, Ecke, and Turhan 2011), and
ELK (Kazakov, Krötzsch, and Simančík 2011a).

Continued research strove to extend EL with additional
features while preserving its low worst-case complexity.
This led to the description logic EL++ (Baader, Brandt,
and Lutz 2005), its extension with certain range restric-
tions (Baader, Brandt, and Lutz 2008), and ultimately to the
OWL EL profile of the Web Ontology Language as stan-
dardized by the W3C (Motik et al. 27 October 2009).

A very interesting feature that EL++ and OWL EL add
to EL are nominals, i.e., concepts that have exactly one ele-
ment. In general, this can be used to express enumerations,
e.g., expressions of the form

TheBeatles ≡ {john} t {paul} t {george} t {ringo}.
Copyright c© 2012, Association for the Advancement of Artificial
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Since EL-type logics do not feature unions (t), the use
of nominals there is limited to singleton concepts. Yet,
there are still a number of interesting applications in this
case. For example, the medical ontology Galen defines
MalePatternBaldness as a kind of LossOfScalpHair that oc-
curs in male patients. Using nominals, this could be ex-
pressed as follows:

LossOfScalpHair u
∃hasPhenotypicalSex.∃hasAbsoluteState.{maleSex}.

The nominal {maleSex} denotes a concept with a sin-
gle element, and the definition thus asserts that the role
hasAbsoluteState has exactly this single value for every in-
stance of MalePatternBaldness. This is generally expressed
with concept expressions of the form ∃R.{c} for which the
OWL standard even introduces a dedicated syntactic short-
cut “ObjectHasValue.”

In practice, however, nominals are hardly used in
OWL EL ontologies. Even Galen models maleSex as an
atomic concept, which seems unintuitive since there is only
one male sex. A closer look reveals many other atomic con-
cepts that are used as values for roles rather than as classes
of objects, e.g., blue, soluble, and even sixteen.

What is the reason for this apparent lack of nominals in
current ontologies? One possible explanation is that prac-
tical tool support for nominals in OWL EL is extremely
limited. Amongst the currently available EL reasoners,
Snorocket provides no support for nominals, CEL only sup-
ports ABox assertions, and the support for nominals in jCEL
is incomplete. One could hope this to be a minor omission,
given that reasoning is still known to be polynomial in the
worst case. However, the implementation of algorithms that
can handle nominals efficiently turned out to be challeng-
ing. A difficulty in this case is that, in the presence of nom-
inals, mere non-emptiness of concepts can lead to new en-
tailments, e.g., asserting that a particular concept has at least
one instance may lead to a new subsumption between atomic
concepts. This contrasts strongly to the case of EL without
nominals, where non-emptiness of concepts (and, in fact, ar-
bitrary ABox assertions) can never entail a new TBox fact.

To deal with this difficulty, algorithms must take non-
emptiness of concepts into account during reasoning, e.g.,
by tracking whether non-emptiness of one concept implies
non-emptiness of another. Baader et al. (2005) proposed to



Syntax Semantics
Concepts:

atomic concept A AI

nominal {a} {aI}
top > ∆I

conjunction C uD CI ∩DI
existential restriction ∃R.C {x | ∃y ∈CI : 〈x, y〉 ∈RI}

Axioms:
concept inclusion C vD CI ⊆ DI

Table 1: Syntax and semantics of ELO

do this by computing a reachability relation  R. Unfor-
tunately, this relation turns out to be prohibitively large in
many practical cases: experiments in this paper show that
it often exceeds the total amount of entailed atomic concept
subsumptions by several orders of magnitude. Recent work
indicates that such problems are not merely a deficiency of
the particular algorithm, but that nominals represent a key
challenge for consequence-based OWL EL reasoning pro-
cedures in general (Krötzsch 2011).

In this paper, we address this challenge with new rea-
soning procedures that we have developed in the context of
our OWL EL reasoner ELK. Since the difficulties caused
by adding nominals to EL are largely orthogonal to those
caused by the remaining features of OWL EL, in order to
keep the presentation as simple as possible, in this paper we
focus on a very simple logic ELO. Our results presented
here can be applied to other logics from the EL family as
well. Our main contributions are the following:

Reasoning Calculus We analyze reasoning with nominals
and present a sound and complete consequence-based in-
ferencing calculus for ELO.

Optimization We optimize our algorithm to obtain a “pay-
as-you-go” behavior that avoids the performance penal-
ties of the general algorithm in cases where no interesting
entailments can possibly follow from the use of nominals.
We present three techniques: axiom reuse, use of strongly
connected components, and overestimation.

Implementation and Evaluation Based on our implemen-
tation in ELK, we evaluate to what extent these opti-
mizations improve performance in practical cases. We
find that all three optimizations can lead to significant
improvements for practical ontologies. Our experiments
also show that the basic calculus without our modifica-
tions is infeasible in many cases.

Safe Use of Nominals Abstracting from the ideas underly-
ing this optimization, we formulate syntactic conditions
by which one can easily check whether nominals are used
safely in the sense that they do not lead to additional en-
tailments. Experiments show that many practical ontolo-
gies satisfy this criterion.

Preliminaries
The vocabulary of ELO consists of countably infinite sets
of atomic concepts, (atomic) roles, and individuals. Com-

Rv
C v D
C v E

: D v E ∈ O

R−u
C v D1 uD2

C v D1

C v D2

R−∃
C v ∃R.D
D v D

R+
>
C v C
C v >

: > occurs in O

R+
u
C v D1 C v D2

C v D1 uD2
: D1 uD2 occurs in O

R+
∃
C v ∃R.D D v E

C v ∃R.E
: ∃R.E occurs in O

Table 2: Inference rules for reasoning in EL

plex concepts are defined recursively using the constructors
in Table 1. Here we use the letters C and D for concepts, A
for atomic concepts, R for roles, and a for individuals. An
ontology is a finite set of concept inclusion axioms C v D.
A concept equivalence C ≡ D is an abbreviation for the two
concept inclusions C v D and D v C.
ELO has Tarski-style semantics. An interpretation I con-

sists of a non-empty set ∆I called the domain of I and
an interpretation function ·I that assigns to each A a set
AI ⊆ ∆I , to each R a binary relation RI ⊆ ∆I × ∆I ,
and to each a an element aI ∈ ∆I . The interpretation func-
tion is extended to complex concepts as shown in Table 1.

An interpretation I satisfies an axiom C v D (written
I |= C v D) if CI ⊆ DI . If an interpretation I satisfies
all axioms in an ontologyO, then I is a model ofO (written
I |= O). An axiom α is a consequence of an ontology O
(written O |= α) if every model of O satisfies α. A concept
C is subsumed by D w.r.t. O if O |= C v D. Ontology
classification is the task that requires to compute all pairs
〈A,B〉 of atomic concepts such that O |= A v B.

The DL EL is ELO without nominals. Reasoning in EL
can be performed using the inference rules in Table 2. These
rules are closely related to the original completion rules for
EL++ (Baader, Brandt, and Lutz 2005), but do not require
the ontology to be normalized. Intuitively, the rules are dis-
tinguished to those introducing constructors (R>+, Ru+,
R∃

+), eliminating constructors (Ru−, R∃−), and using the
axioms from the ontology (Rv). Note that the axioms in O
are not used as premises of the inference rules, but as side
conditions of Rv. The inference rules in Table 2 are sound
in the sense that for every model I of O, if I is a model of
the premises, then I is a model of the conclusions. Further-
more, the rules are complete in the following sense:

Theorem 1 (Completeness for EL). Let O be an EL ontol-
ogy, S a set of axioms closed under the rules in Table 2, and
G a concept such thatG v G ∈ S. Then for each conceptD
occurring in O we have O |= G v D implies G v D ∈ S.



Theorem 1 follows from completeness of a more general
procedure for ELHR+ (Kazakov, Krötzsch, and Simančík
2011a), of which the rules in Table 2 are obtained by restrict-
ing the language to EL. Intuitively, the theorem says that in
order to compute subsumptions between the goal concept
G and concepts occurring in O, it is sufficient to compute
the conclusions of the inference rules from the initial ax-
iom G v G. Because this procedure is not well known,
we demonstrate how Theorem 1 can be used for computing
subsumption relations in EL ontologies.
Example 2. ConsiderO consisting of the following axioms:

A v ∃R.B, (1)
B v C, (2)

∃R.(B u C) v B. (3)

We prove that O |= A v B by applying Theorem 1 for the
goal concept G = A, i.e., by computing the conclusions of
the initial axiom A v A using the rules in Table 2. We write
RX(ax1), . . . , (axn)[ : (ax)] to denote that an axiom is ob-
tained by applying the rule RX to premises (ax1), . . . , (axn)
possibly using an axiom (ax) in O as a side condition.

A v A initial axiom (4)
A v ∃R.B by Rv (4): (1) (5)

B v B by R−∃ (5) (6)
B v C by Rv (6): (2) (7)

B v B u C by R+
u (6), (7) (8)

A v ∃R.(B u C) by R+
∃ (5), (8) (9)

A v B by Rv (9): (3) (10)

Since the inference rules in Table 2 are sound, from (10), we
can conclude thatO |= A v B. Furthermore, since the set S
of axioms (4)–(10) is, in fact, closed under all inference rules
in Table 2 and contains the initial axiomsA v A andB v B
for the goal concepts A and B, by Theorem 1, S contains all
and only implied subsumptions between the concepts A and
B and the concepts occurring in O. In particular, we can
conclude that O 6|= A v C and O 6|= B v A.

As can be seen from Example 2, in order to classify an
ontology, it is sufficient to apply Theorem 1 for all atomic
concepts A occurring in the ontology as the goal concepts,
i.e., to compute all conclusions of the inference rules in Ta-
ble 2 from the axiomsA v A, whereA is an atomic concept.

Note that the inferences (8) and (9) use the property that
the concepts B u C and ∃R.(B u C) occur in O as side
conditions of the rules R+

u and R+
∃ . Even though these

side conditions are not required for soundness or complete-
ness, they prevent the rules from deriving unnecessary con-
sequences. For example, from (4) and (10) it is possible to
derive A v A uB, but this axiom is irrelevant since A uB
does not occur in the ontology. Restricting the rules in this
way makes the classification procedure polynomial in worst
case. Indeed, it can be shown by induction that a conse-
quence C v D is derived only if both C and D occur in
the ontology. Therefore, the maximum number of derived
subsumptions is quadratic in the size of the ontology.

Reasoning in ELO
Extending the EL language with nominals—concepts that
are interpreted by singleton sets—provides sufficient func-
tionality for expressing several commonly used constructors
and axioms in ontologies, such as concept assertions a : C,
which can be written as {a} v C, role assertions R(a, b),
which can be written as {a} v ∃R.{b}, and OWL con-
structors such as “ObjectHasValue,” which can be written
as ∃R.{a}. However, nominals can also be used to express
more sophisticated properties.

Consider the following axiom with a nominal:

A v ∃R.(B u {o}). (11)

This axiom expresses the property that (i) every instance of
A isR-connected to the individual o, and (ii) o is an instance
of B if A has at least one instance. The property (ii) can be
regarded as a conditional axiom—an axiom that holds only
if some other property holds, e.g., concept A is non-empty.

It is possible to express not only conditional instance ax-
ioms, but also conditional subsumption axioms. For exam-
ple, if we extend (11) with two concept definitions

C ≡ ∃S.{o} and D ≡ ∃S.B, (12)

then these axioms would imply that C is subsumed by D if
A is non-empty. We will write such conditional subsump-
tions as A : C v D with the semantics I |= A : C v D
if AI 6= ∅ implies CI ⊆ DI . Thus, (11) is equivalent
to A v ∃R.{o} and A : {o} v B. To distinguish from
conditional subsumptions A : C v D, we refer to ordinary
subsumptions C v D as definite subsumptions. Note that
the definite subsumption C v D implies a conditional sub-
sumption A : C v D for every A, and is equivalent to the
conditional subsumptions C : C v D and > : C v D.

It turns out that new definite subsumptions can be derived
from conditional subsumptions. Therefore, conditional sub-
sumptions cannot be ignored for classification.
Example 3. ConsiderO consisting of the following axioms:

A v ∃R.(B u {o}), (13)
A v ∃S.{o}, (14)

∃S.B v B. (15)

We prove that O |= A v B. Indeed, as has been shown,
(13) implies A : {o} v B. Therefore, from (14) we obtain
A : A v ∃S.B, which is equivalent to A v ∃S.B, from
which, using (15), we obtain A v B.

The conditional subsumption A : {o} v B follows from
(11) because non-emptiness of A implies non-emptiness of
B u {o}, which, in turn, implies {o} v B. The same effect
can also be caused by axiomA v ∃S.∃R.(Bu{o}), or even
by a combination of several axioms, such as A v ∃S.∃R.C,
C v D, and ∃R.D v ∃R.(B u {o}). Therefore, for com-
puting conditional subsumptions, it is necessary to analyze
implications between non-emptiness of concepts.

To track implications between non-emptiness of concepts,
we introduce a new type of axioms C  D called reacha-
bility axioms with the semantics I |= C  D if CI 6= ∅
implies DI 6= ∅. Note that C  D can be expressed using



Rv
G : C v D
G : C v E

: D v E ∈ O

R−u
G : C v D1 uD2

G : C v D1

G : C v D2

R+
 
G C G : C v ∃R.D

G D

R− 
G D

G : D v D

R+
>

G C

G : C v >
: > occurs in O

R+
u
G : C v D1 G : C v D2

G : C v D1 uD2
: D1 uD2 occurs in O

R+
∃
G : C v ∃R.D G : D v E

G : C v ∃R.E
: ∃R.E occurs in O

R{}
G : C v {o} G : D v {o} G C G D

G : C v D

Table 3: Inference rules for reasoning in ELO

the universal role U as C v ∃U.D. The axiom C  D is
closely related to the relation C  R D used in the comple-
tion rules for EL++ (Baader, Brandt, and Lutz 2005).

We are now ready to explain the inference rules for rea-
soning in ELO listed in Table 3. The rules derive conditional
subsumptions of the form G : C v D as well as reachability
axioms G  D. Rules Rv, R−u , R+

u , R+
∃ are analogous

to the corresponding rules in Table 2. Rule R+
 uses posi-

tive existential restrictions to propagate reachability, which
can be used in rules R− and R+

> to derive the conclusions
similar to those of rules R−∃ and R+

> in Table 2.
Rule R{} is a new rule for reasoning with nominals. Intu-

itively, it says that if, under assumption that G is not empty,
the concepts C and D are subsumed by the nominal {o} and
are not empty, then C is equivalent to D: note that the rule
is symmetric w.r.t. C and D, so it will, in fact, derive two
conclusions G : C v D and G : D v C. Note also that the
premise G  C is not necessary for deriving the conclu-
sion G : C v D. The purpose of the additional premise is to
avoid irrelevant consequences, similar to the side conditions
of the rules R+

u and R+
∃ . It is easy to see that all rules in Ta-

ble 3 are sound, that is, for every model I ofO, if I satisfies
all premises, then I satisfies all conclusions. The analogue
of Theorem 1 is formulated for ELO as follows:

Theorem 4 (Completeness for ELO). Let O be an ELO
ontology, S a set of axioms closed under the rules in Table 3,
and G a concept such that G  G ∈ S and G  {o} ∈ S
for every nominal {o}. Then for each concept D occurring
in O we have O |= G v D implies G : G v D ∈ S.

Proof (sketch). We will construct a model I = I(G) of O

such that for every D occurring in O, if G : G v D /∈ S
then I 6|= G v D.

For every concept D, let us define a set of concepts

[D] := {C | G C and G : C v D ∈ S}. (16)

Intuitively, [D] represents the set of concepts reachable
from G that are derived sub-concepts of D under the non-
emptiness assumption for G.

Let us define the interpretation I = I(G) as follows:

∆I = {x[D] | G D ∈ S}, (17)

AI = {x[D] ∈ ∆I | [D] ⊆ [A]}, (18)

RI = {〈x[D], x[E]〉 ∈ ∆I ×∆I | [D] ⊆ [∃R.E]}, (19)

aI = x[{a}], (20)

where x[D] is a distinguished element for each set [D]. Note
that it is possible that [D1] = [D2] for different D1 and D2,
in which case we shall also have x[D1] = x[D2]. Note that
x[{a}] ∈ ∆I since G  {a} ∈ S by our assumption, so aI
is well-defined for every a. Since S is closed under the rule
R− , by (17) and (16) we have

x[D] ∈ ∆I implies D ∈ [D]. (21)

The following properties (22) and (23) can be proved by
structural induction on D using the fact that S is closed un-
der the inference rules in Table 3. Full details can be found
in the appendix.

For every concept D we have

DI ⊇ {x[C] ∈ ∆I | [C] ⊆ [D]}. (22)

In addition, if D occurs in O, we have

DI ⊆ {x[C] ∈ ∆I | [C] ⊆ [D]}. (23)

To prove that I is a model ofO, take any axiomD v E ∈
O. Since D and E occur in O, by (22) and (23), we have

DI = {x[C] ∈ ∆I | [C] ⊆ [D]}, (24)

EI = {x[C] ∈ ∆I | [C] ⊆ [E]}. (25)

Therefore, it is sufficient to show that [D] ⊆ [E]. Assume
that C ∈ [D]. We will prove that C ∈ [E].

Since C ∈ [D], by (16), we have G  C and G : C v
D ∈ S. Since D v E ∈ O and S is closed under Rv, we
have G : C v E ∈ S. Therefore, since G  C, by (16),
C ∈ [E], which was required to be shown.

Finally, it remains to prove that I 6|= G v D if D occurs
in O and G : G v D /∈ S. Since D occurs in O (but not
necessarily G), by (22) and (23), we have

GI ⊇ {x[C] ∈ ∆I | [C] ⊆ [G]}, (26)

DI = {x[C] ∈ ∆I | [C] ⊆ [D]}. (27)

Since, by assumption of the theorem, G  G ∈ S, by (17)
x[G] ∈ ∆I , and, since [G] ⊆ [G], by (26), x[G] ∈ GI .

Assume, to the contrary that I |= G v D. Then x[G] ∈
GI ⊆ DI thus, by (27), [G] ⊆ [D]. Since x[G] ∈ ∆I , by
(21), G ∈ [G]. Therefore G ∈ [D], and by (16), G : G v
D ∈ S. This contradicts to the assumption G : G v D 6∈ S.
Therefore, I 6|= G v D.

Since I is a model ofO, it follows thatO 6|= G v D.



Example 5. Let us compute the entailed super-concepts of
A for ontologyO consisting of axioms (13)–(15) using The-
orem 4. By the theorem, it is sufficient to compute the con-
clusions of the inference rules in Table 3 for the goalG = A,
i.e., from the axioms A A and A {o} in our case.

A A initial axiom (28)
A {o} initial axiom (29)

A : A v A by R− (28) (30)

A : {o} v {o} by R− (29) (31)
A : A v ∃R.(B u {o}) by Rv (30): (13) (32)

A : A v ∃S.{o} by Rv (30): (14) (33)

A B u {o} by R+
 (28), (32) (34)

A : B u {o} v B u {o} by R− (34) (35)

A : B u {o} v B by R−u (35) (36)

A : B u {o} v {o} by R−u (35) (37)

A : {o} v B u {o} by R{} (31),

(37), (29), (34)
(38)

A : {o} v B by R−u (38) (39)

A : A v ∃S.B by R+
∃ (33), (39) (40)

A : A v B by Rv (40): (15) (41)
Since axioms (28) and (29) are satisfied in every model and
the inference rules are sound, all computed axioms are en-
tailed by O. Therefore, from (30), (40), and (41), we obtain
O |= A v A, O |= A v ∃S.B, and O |= A v B. Since the
computed set of axioms (28)–(41) is closed under the rules
in Table 3, by Theorem 4, we conclude that A, ∃S.B, and B
are the only entailed super-concepts of A occurring in O.

In order to classify an ELO ontology O, it is sufficient to
apply Theorem 4 for every atomic concept in O as the goal,
i.e., to compute the closure under the rules in Table 3 of the
axioms A  A and A  {o} for every atomic concept A
and nominal {o} occurring in O . It is easy to see that only
axioms of the form A  C and A : C v D with A, C,
and D occurring inO, can be derived by the inference rules.
Therefore, the number of derived axioms is at most cubic in
the size of O.
Remark 6. The original procedure for EL++ (Baader,
Brandt, and Lutz 2005) was formulated with much simpler
rules for reasoning with nominals. In particular, the rules
derive only definite subsumptions, like those in Table 2, and
the analogue of R{} was formulated as follows:

C v {o} D v {o} C  D

C v D
(42)

Although rule (42) is sound, this procedure is not complete
for nominals. In particular, it is not possible to prove the
subsumption A v B in Example 5. It was recently ar-
gued that under quite general assumptions, every complete
deterministic rule-based procedure for ELO must derive at
least cubically many axioms (Krötzsch 2011). Therefore,
any procedure deriving just definite subsumptions C v D
and reachability axioms C  D (with C and D occurring
in the ontology) would be incomplete.

Axiom Reuse
Although the classification procedure based on the rules in
Table 3 is tractable, a direct implementation of this proce-
dure would be impractical. For example, if an ontology con-
tains a large number of atomic concepts and nominals, then
already the number of initialization axioms A  {a} can
be quadratic. Algorithms that are quadratic in a typical case,
rather than in the worst case, are usually considered to be
impractical. Even when the ontology contains a small num-
ber of nominals, or no nominals at all, the procedure can be
impractical due to a large number of conclusions produced.

To demonstrate the problem, consider the ontology O in
Example 5 extended with one additional axiom

C v ∃R.A. (43)

In order to classify this ontology, we have to compute, in
particular, the conclusions for the goals A and C under the
inference rules in Table 3. As demonstrated in Example 5,
for A we obtain the conclusions (28)–(41). Similarly, for C
we derive:

C  C initial axiom (44)
C  {o} initial axiom (45)

C : C v C by R− (44) (46)
C : C v ∃R.A by Rv (46): (43) (47)

C  A by R+
 (44), (47) (48)

It is easy to see that for every axiomA D andA : D v E
in (28)–(41), we would also derive C  D and C : D v E
because of (48). That is, whenever one goal G1 is reachable
from another goal G2 (i.e., G2  G1 is derivable), the in-
ferences computed for G1 would always have to be repeated
for G2 as well. Essentially, the conclusions computed for a
goal G1 can never be reused for another goal G2. This is the
case even when the ontology contains no nominals.

The procedure for EL, on the other hand, does not have
this drawback. To compare the two procedures, let us com-
pute the conclusions produced by the rules in Table 2 for the
goals A and C (although the result will be incomplete in our
case). For A, we obtain the following conclusions:

A v A initial axiom (49)
A v ∃R.(B u {o}) by Rv (49): (13) (50)

A v ∃S.{o} by Rv (49): (14) (51)

B u {o} v B u {o} by R−∃ (50) (52)

{o} v {o} by R−∃ (51) (53)

B u {o} v B by R−u (52) (54)

B u {o} v {o} by R−u (52) (55)

For C, in addition, we obtain the following conclusions:

C v C initial axiom (56)
C v ∃R.A by Rv (56): (43) (57)

Note that rule R−∃ can be applied to (57), but unlike (48),
it produces an axiom (49), which has been already derived.



Therefore, all further inferences for C are not necessary be-
cause all conclusions have already been computed for A.

The ability to share derived consequences for different
goals is one of the distinguished properties of the EL-style
reasoning procedures, which makes them able to classify
complex ontologies, such as Galen, that could not be classi-
fied using conventional tableau procedures (Kazakov 2009).
It is, therefore, essential to retain this property for ELO.

Recall that any definite subsumption D v E is stronger
than the conditional subsumption G : D v E. Therefore,
the conditional subsumptions (30)–(33), (35)–(37), (46), and
(47) become redundant once definite subsumptions (49)–
(57) are derived. Unlike conditional subsumptions, definite
subsumptions can be shared among different goals.

This observation suggests our first optimization. We com-
pute the classification in two stages. In Stage 1, the EL rules
are applied to compute definite subsumptions. In Stage 2,
we apply a modified version of the ELO rules that can use
any definite subsumption D v E as if it were G : D v E
for arbitrary goal G. Stage 2 does, however, not consider
rules where all premises are of a form obtained in Stage 1,
as these would clearly be redundant. Moreover, it is not nec-
essary to store conclusions G : D v E for which D v E
was already derived.

Using this optimization, it is possible to share derived
axioms among several goals. The optimized procedure ex-
hibits a so-called “pay-as-you-go” behavior w.r.t. nominals:
if there are no nominals in the ontology, no conditional sub-
sumption will be derived, and the procedure will work al-
most exactly as for EL, apart from deriving reachability ax-
ioms. Even if the ontology contains a small number of ax-
ioms with nominals, the number of derived conditional sub-
sumptions is likely to be small as well.

We can further extend this approach to also address the
problem caused by a large number of nominals. As ex-
plained above, the number of initialization axioms of the
form G  {o} in Stage 2 can be very large. To reduce
this number, we extend Stage 1 to also apply the rules of
Table 3 to the initial axioms >  > and >  {o} for ev-
ery nominal {o}. Note, that I |= >  C iff CI 6= ∅ and
I |= > : C v D iff CI ⊆ DI , so, this approach essentially
produces further definite non-emptiness and subsumption
axioms. The additional axioms > C and > : C v D can
serve the same purpose as the definite subsumptions com-
puted by the EL rules, i.e., they can implicitly represent the
corresponding reachability axioms G  C and conditional
subsumptions G : C v D for every goal G. In particular, it
is not necessary to create the axioms of the form G  {o}
since stronger axioms > {o} are provided by Stage 1.

Pruning of Reachability Axioms
Reusing axioms can significantly reduce the number of de-
rived conditional subsumptions, but the number of reacha-
bility axioms G  C that are computed in Stage 2 can still
be very large. This is particularly problematic for ontolo-
gies containing many cyclic axioms. For example, ontolo-
gies Galen and FMA use cyclic axioms to express parton-
omy relationships between anatomic structures, such as “the

myocardium is a muscle that is a part of the heart”:
Myocardium ≡ Muscle u ∃isPartOf.Heart, (58)

Heart v ∃hasPart.Myocardium. (59)
From (58), we can derive Myocardium  Heart, and from
(59), we can derive Heart  Myocardium. Because of the
large number of axioms, such as (58) and (59), and the fact
that from every anatomic structure one can, in theory, reach
any other anatomic structure through a chain of “isPartOf”
or “hasPart” relations, there are almost quadratically many
reachability axioms C  D in Galen and FMA.

Cyclic existential axioms, such as (58) and (59) are likely
to result in cyclic reachability relations. A large component
of mutually reachable concepts can easily cause a quadratic
blowup in the number of reachability axioms. On the other
hand, all reachable concepts and conditional subsumptions
for elements of the same component are the same because all
concepts in such component are non-empty if one of them is.

This observation suggests our second optimization. Af-
ter completing Stage 1, we build a directed graph contain-
ing an edge 〈C,D〉 for each derived axiom C v ∃R.D,
and compute all strongly components in this graph in linear
time (Tarjan 1972). For each two concepts C and D in a
strongly connected component, we have O |= C  D and
O |= D  C. Therefore, we can choose one representative
of each component as the goal for Stage 2; the computed
reachability axioms and conditional subsumptions can then
be reused for all other elements of the same component.

This strategy can be optimized even further by recording,
for every derived (conditional) subsumption C v ∃R.D and
G : C v ∃R.D, a (conditional) connection C ′ → D′ and
G : C ′ → D′ between representatives C ′ and D′ of the
components for C and D. These connections can be used
instead of the original subsumptions in rule R+

 . This way,
we reduce the number of applications of this rule because
there could be many existential axioms C v ∃R.D and
G : C v ∃R.D with the same representatives C ′ and D′.

Optimized Reasoning with Overestimation
For Galen, computing reachability axioms is not necessary
since this ontology does not contain any nominals. But even
in ontologies containing nominals, computing reachability
for a goal concept G is necessary only if for some concept
D, subsumption G v D is not derived by the EL rules, but
G : G v D can be derived by the ELO rules. But how can
we check if G : G v D can be derived by the ELO rules
without actually computing the reachability axioms for G?

The main idea behind our third optimization is to overes-
timate the entailed subsumption relations in ELO. We will
call such axioms potential subsumptions and denote them by
?: C v D. The inference rules for deriving potential sub-
sumptions are presented in Table 4. All rules but R{} are
identical to the EL rules in Table 2, except that they oper-
ate with potential subsumptions instead of definite subsump-
tions. Clearly, rule R{}, if it were formulated for definite
subsumptions, would be unsound. This rule can be seen as
a weakened version of rule R{} in Table 3 if we delete all
reachability axioms in the premises and replace conditional
subsumptions with the respective potential subsumptions.



Rv
?: C v D
?: C v E

: D v E ∈ O

R−u
?: C v D1 uD2

?: C v D1

?: C v D2

R−∃
?: C v ∃R.D

?: D v D

R+
>

?: C v C
?: C v >

: > occurs in O

R+
u

?: C v D1 ?: C v D2

?: C v D1 uD2
: D1 uD2 occurs in O

R+
∃

?: C v ∃R.D ?: D v E
?: C v ∃R.E

: ∃R.E occurs in O

R{}
?: C v {o} ?: D v {o}

?: C v D

Table 4: The overestimation inference rules for ELO

The main purpose of the rules in Table 4 is to provide an
efficient way of checking if the axioms derived by the EL
rules are already all subsumptions entailed in ELO: if the
definite subsumptions derived by the underestimation rules
in Table 2 coincide with the potential subsumptions derived
by the overestimation rules in Table 4, we know that all the
relevant entailed subsumptions are computed. The correct-
ness of this method follows from the following theorem:

Theorem 7 (Overestimation). Let O be an ELO ontology,
S a set of axioms closed under the rules in Table 4, and G a
concept such that ?: G v G ∈ S, and ?: {o} v {o} ∈ S
for every nominal {o}. Then for each concept D occurring
in O, we have O |= G v D implies ?: G v D ∈ S.

Proof. Given a set S and a concept G satisfying the condi-
tion of the theorem, define

S′ := {G C | ?: C v C ∈ S} ∪
{G : C v D | ?: C v D ∈ S}.

(60)

We prove that S′ satisfies the condition of Theorem 4, from
which it follows thatO |= G v D implies G : G v D ∈ S′,
which by (60) implies ?: G v D ∈ S.

Indeed, since ?: G v G ∈ S, by (60), G  G ∈ S′,
and for every nominal {o}, since ?: {o} v {o} ∈ S,
by (60), G  {o} ∈ S′ . Furthermore, S′ is closed
under the inference rules in Table 3. For all rules ex-
cept for R+

 and R− this follows from the fact that S is
closed under the corresponding rules in Table 4. For rule
R+
 , ifG C ∈ S′ andG : C v ∃R.D ∈ S′, then, by (60),

?: C v ∃R.D ∈ S; then, since S is closed under R−∃ in
Table 4, ?: D v D ∈ S, so, by (60), G D ∈ S′. For
rule R− , if G D ∈ S′, then, by (60), ?: D v D ∈ S, so,
again by (60), G : D v D ∈ S′.

The optimized reasoning procedure for ELO can now be
described as follows. Given an ELO ontology O and a goal
concept G, the procedure works in two stages. Stage 1 is an
extension of the first stage in the axiom reusing algorithm
above, i.e., it applies the EL rules in Table 2 (with initial
axiom G v G) and the ELO rules in Table 3 for the goal >
(with initial axioms> > and> {o} for every nominal
{o}). In addition, Stage 1 applies the rules in Table 4 using
the initial axioms ?: G v G and ?: {o} v {o} for every
nominal {o}. After that, we check if there is an (atomic)
concept D such that a potential subsumption ?: G v D is
derived, but the corresponding definite subsumption G v D
(or, possibly,> : G v D) is not derived. If no suchD exists,
we know that we have computed all entailed (atomic) super-
concepts of G occurring in O. Indeed, if G v D is derived,
then O |= G v D. Conversely, if O |= G v D, then by
Theorem 7, ?: G v D is derived, in which case we know
that G v D is derived as well.

If we have found some D such that ?: G v D is derived
but G v D is not derived, then Stage 2 is necessary for
G in order to determine whether O |= G v D. In this
case, we apply the ELO rules in Table 3 for the initial axiom
G G, reusing the definite axioms from Stage 1 as before.
O |= G v D holds exactly if G : G v D is derived.

In practice, we do not compute the overestimation axioms
independently from the definite axioms. Instead, in the same
way as for the conditional subsumptions, we reuse every def-
inite subsumption C v D and > : C v D as potential sub-
sumption ?: C v D, and apply the rules accordingly.
Example 8. Let us demonstrate how to compute the entailed
super-concepts of A for ontology O in Example 5 using our
optimized procedure. By applying the EL rules for the goal
G = A, we derive definite subsumptions (49)–(55). Ap-
plying the ELO rules to the goal G = >, we derive two
reachability axioms and no new subsumptions:

> > initial axiom (61)
> {o} initial axiom (62)

By reusing definite subsumptions (49)–(55) as potential sub-
sumptions, we additionally derive the following potential
non-definite subsumptions for A using the rules in Table 4:

?: {o} v B u {o} by R{} (53), (55) (63)

?: {o} v B by R−u (63) (64)

?: A v ∃S.B by R+
∃ (51), (64) (65)

?: A v B by Rv (65): (15) (66)

Note that the first potential non-definite subsumption can
only be derived by the rule R{}. Since ?: A v B has been
derived, but A v B has not been derived, we have to apply
Stage 2 for A. To this end, we derive the following reacha-
bility axioms and conditional non-definite subsumptions us-
ing the rules in Table 3, again, reusing definite reachability
and subsumption axioms as conditional ones for A:

A A initial axiom (67)

A B u {o} by R+
 (67), (50) (68)



SNOMED Galen FMA
atomic concepts 315,491 23,136 41,646
concepts 544,055 50,259 82,036
roles 58 950 86
nominals 0 0 85
axioms 430,844 36,547 116,111

Table 5: Ontology metrics

A : {o} v B u {o} by R{} (53), (55), (62), (68) (69)

A : {o} v B by R−u (69) (70)

A : A v ∃S.B by R+
∃ (51), (70) (71)

A : A v B by Rv (71): (15) (72)

Since the computed set of axioms is closed under the ELO
rules, from (49), (71), and (72), we conclude that A, ∃S.B,
and B are the only super-concepts of A occurring in O.

Let us now look what happens if we, additionally, have an
axiom (43) inO, and are required to compute super-concepts
of C. As we have demonstrated, (56) and (57) are the only
additional definite subsumptions derived by the EL rules for
C. The rules in Table 4 will not derive any new potential
subsumptions since rule R{} is not applicable to (56) or
(57). Therefore, Stage 2 is not necessary for C. Thus, C
and ∃R.A are the only super-concepts of C occurring in O.

As demonstrated in Example 8, the use of the overesti-
mation rules in Table 4 in conjunction with underestima-
tion rules in Table 2 provides an effective filter that can pre-
vent deriving many conditional subsumptions and reachabil-
ity axioms. Of course, this filter is not perfect, and it may
well happen that a potential subsumption is derived that is
not confirmed in Stage 2.

Experimental Results
We have implemented the two stage classification procedure
from the previous section in our OWL EL reasoner ELK,
and conducted a series of experiments on realistic ontolo-
gies to analyze the performance improvement given by each
optimization. The implementation in ELK covers additional
features that are not the focus of this paper, in particular
transitive roles and role hierarchies (Kazakov, Krötzsch, and
Simančík 2011a). This improves our coverage of realistic
test ontologies without affecting the validity of our experi-
ments. Since no other EL reasoner supports nominals fully,
we do not compare the performance of ELK against other
reasoners here. All experiments were performed on a laptop
with Intel Core i7-2630QM 2GHz quad core CPU and 6GB
of RAM running Java 1.6 under Microsoft Windows 7.

None of the existing ontologies that are commonly used
for testing EL reasoners, including SNOMED CT, Galen,
FMA-lite, and GO, contain nominals. In order to be able
to experiment with at least one large ontology that contains
nominals explicitly, we considered FMA-Constitutional, the
largest ontology containing nominals that was used in the
evaluation of the HermiT reasoner (Motik, Shearer, and Hor-
rocks 2009), and reduced it to ELO by discarding all axioms

SNOMED Galen FMA
Stage 1:
rules 22,082,002 2,043,182 1,527,174
axioms 14,091,757 1,447,049 1,343,746
runtime 7.6 s 1.2 s 1.3 s
Stage 2:
rules 24,716,789 969,212,770 > 5 billion
axioms 5,780,349 38,042,481 > 400 million
runtime 4.5 s 118.2 s > 25 min

Table 6: Experiments for axiom reuse

with unsupported features. This way we obtained an ontol-
ogy that contains 85 nominals occurring in 6,455 axioms.

Our basic ontology test suite consists of SNOMED CT,1
an OWL EL version of Galen,2 and FMA-Constitutional re-
duced to ELO. Table 5 contains some statistics about these
ontologies. The reason for including ontologies without
nominals was to evaluate the effect of computing reachabil-
ity axioms on the performance of the algorithm without the
overestimation optimization. For experiments with overes-
timation, we constructed further ontologies by introducing
nominals into Galen and SNOMED CT as described below.

Axiom Reuse
Our first series of experiments evaluates the performance of
the basic classification algorithm in Table 3 with the axiom
reuse optimization, but without overestimation.

The results are shown in Table 6. For each of the two
stages, we measure the number of rule applications, the
number of derived axioms, and the running time. Differ-
ent rule applications may lead to the same inferences, hence
the number of rules is always above the number of derived
axioms. Rule applications require significant computational
effort, whether or not the inference is actually redundant or
not, hence their number is often a better measure of perfor-
mance than the number of unique axioms. In all cases, the
only rule applied in Stage 2 was rule R+

 from Table 3, and
thus all newly derived axioms are reachability statements.
This is is clear for SNOMED CT and Galen due to the ab-
sence of nominals, while it is an interesting observation for
FMA. For the case of FMA, Stage 2 ran out of memory af-
ter 25 minutes, and the reported number of rules and axioms
reflects the state at that time.

The results show that, for SNOMED CT, materializing
reachability in Stage 2 requires similar amount of computa-
tion effort as applying the EL rules in the first stage. This is
so since the reachability relation is acyclic in this ontology.
This contrasts sharply to what happens for Galen and FMA,
where reachability is highly cyclic and the second stage can
require up to four orders of magnitude more inferences than
the first stage. This confirms our hypothesis that axiom reuse
alone does not provide reliable performance even in cases
where nominals are not leading to new conclusions.

1from http://ihtsdo.org/ (needs registration)
2from http://condor-reasoner.googlecode.com/



SNOMED Galen FMA
largest comp. 1 2,691 15,855
#components 315,491 19,957 25,203
#singletons 315,491 19,789 25,047
R+
 rules 22,638,567 16,381,638 272,000,623
 axioms 5,780,349 3,552,962 9,141,307

Table 7: Experiments for pruning reachability axioms

Galen-n1 Galen-n2
nominals 739 1,113
potential subsumptions 1,407 54,424
confirmed subsumptions 357 129
goals for Stage 2 62 1,397
goals with new subsumptions 56 73
Stage 1:
rules 2,105,091 3,114,416
axioms 1,460,923 1,814,528
runtime 1.7 s 1.9 s
Stage 2:
rules 61,891 8,887,440
axioms 40,950 5,483,853
runtime 0.2 s 9.6 s

Table 8: Experiments for overestimation with axiom reuse

Pruning of Reachability Axioms
In this experiment, we evaluate the potential for optimizing
Stage 2 using components of mutually reachable concepts,
as explained in the corresponding section. Statistics about
the strongly connected components obtained from Stage 1
are shown in Table 7. Although both Galen and FMA con-
tain one very large component, the majority of concepts are
still found in singleton components. We observed that, for
both Galen and FMA, the size of the second largest com-
ponent already drops under 20. Due to the large number of
components, the number of goals for which Stage 2 is re-
quired is not reduced significantly in any of the cases.

The second part of Table 7 shows the effort of comput-
ing reachability axioms between representatives of the com-
puted components. The result can be compared to Stage 2 in
Table 6, which also computed nothing but reachability ax-
ioms. Although there is a significant reduction of effort for
Galen and FMA, the numbers are still significantly larger
than those of Stage 1. Note that, in our case, the number
of components cannot be reduced any further since Stage 2
does not produce any new subsumptions, and therefore all
reachability components are computed exactly after Stage 1.

Reasoning with Overestimation
In this experiment, we evaluate the benefits of using the
overestimation rules in Table 4 to reduce the number of in-
ferences in Stage 2. Stage 1 is as described in the corre-
sponding section: we reuse definite axioms computed by the
EL rules in Table 2 and ELO rules in Table 3 for the goal >
when computing potential axioms using the rules in Table 4.

As long as all potential subsumptions are definite, the al-

gorithm does not perform any computations beyond the ba-
sic EL approach. This happens for SNOMED CT and Galen
(which do not have nominals), but also for FMA. The data
for Stage 1 is thus as in Table 6, and Stage 2 is not needed.

To obtain more interesting results, we tried to con-
struct realistic test ontologies by introducing nominals into
SNOMED CT and Galen. Both ontologies contain several
hundreds of concepts that are used as values for roles rather
than as classes of objects, e.g., maleSex, blue, and even
sixteen. These are good candidates for concepts that should
perhaps have been modeled as nominals.

An online tutorial at OpenGALEN.org explains that, in
Galen, all such “value types” are subsumed by the built-in
concept SymbolicValueType, and, as a convention to dis-
tinguish them from the rest of the ontology, their names
start with a lower case letter (OpenGalen.org 2011). In
SNOMED CT, the concept QualifierValue plays a similar
role to that of SymbolicValueType in Galen (Rogers 2011).

Based on the hints in the OpenGALEN tutorial, we
thus constructed two variants of the Galen ontology.
For Galen-n1, we identified all atomic sub-concepts of
SymbolicValueType that do not have other atomic sub-
concepts, i.e., which are leaf concepts. This yielded 739
concepts that we replaced by nominals. For Galen-n2, we
replaced all atomic concepts with names starting in lower
case by nominals. This produced a different set of 1,113
nominals, including 244 that were not leaf concepts. The
ontology SNOMED-n was constructed from SNOMED CT
by replacing all leaf atomic sub-concepts of QualifierValue
by nominals. This produced 7,379 nominals.

The experiments showed that SNOMED-n does not re-
quire Stage 2 to be run, with Stage 1 leading to similar
numbers as in Table 6. In Table 8 we thus only report the
results for Galen-n1 and Galen-n2. The number of poten-
tial subsumptions refers to the subsumptions that are po-
tential but not definite. The figures show that Galen-n2 is
more challenging than Galen-n1. Indeed, non-leaf nominals
can cause difficulties to our algorithm since the overestima-
tion rule R{} alone will derive quadratically many potential
equivalences between all atomic sub-concepts of a nominal.
Nonetheless, the overestimation technique is still able to de-
tect that the second stage is needed only for 1,397 concepts,
which is significantly less than the total number of 23,136
atomic concepts that are considered in Stage 2 of the basic
axiom reuse algorithm. This reduction translates into signif-
icant performance gains in Stage 2.

When we inspected the axioms that were confirmed in
the second stage for Galen-n1, we found many undesired
subsumptions such as Adult v Baby and RetiredPerson v
Embryo. Further tests showed that all additional subsump-
tions produced in Stage 2 were due to the nominal status of
the single concept AgeState. Not considering AgeState as
a nominal leads to an ontology for which Stage 2 was not
needed. This shows that even a single modeling error can
have wide-reaching consequences. Similarly, the additional
conclusions obtained in Stage 2 for Galen-n2 did rarely cor-
respond to desirable subsumptions. Even the ELO rules ap-
plied in Stage 1 for > inferred many nominals to be equal
(yielding a total of 8,432 equivalence axioms between nomi-



nals). In this case, however, no small set of concepts appears
to be responsible for the additional conclusions.

Clearly, neither variant of Galen leads to a correct onto-
logical model. In fact, the additional conclusions in Stage 2
indicate inappropriate use of nominals in almost all cases
(see the discussion of safe uses of nominals below). How-
ever, ontology reasoners are a primary tool for detecting
modeling errors at design time, and they must therefore yield
reliable performance in such cases. The two variants of
Galen provide interesting realistic “stress tests” that simulate
a varying number of plausible modeling errors. Our results
confirm that ELK can handle this challenge.

Safe use of nominals
We have observed in our experiments that for a large number
of tested ontologies all entailed subsumptions are already
computed by the EL rules in the first stage of our procedure.
It would be interesting to explain this effect and define a
fragment of ELO for which it is always the case.

Notice, from Example 3, that for deriving the subsump-
tion A v B it is essential that nominal {o} occurs in a con-
junction of (13). We have not observed this to happen very
often in our tested ontologies; the existing nominals mainly
occur under existential restrictions, such as in axiom (14).

We say that an ELO concept C is safe (for nominals), if
every nominal {o} occurs in C only in the form ∃R.{o}. In
other words, safe concepts can be defined by the grammar

Cs = A | ∃R.{o} | > | Cs u Cs | ∃R.Cs. (73)

Safe concepts are essentially EL concepts extended with
the OWL 2 ObjectHasValue constructor. To capture concept
assertions {a} v C and role assertions {a} v ∃R.{b}, we
also allow (non-safe) nominals {a} to appear on the left-
hand-side of concept inclusions. We say that an ELO con-
cept C is negatively safe (for nominals) (short n-safe) if C
is either a nominal or a safe concept. We demonstrate that
the EL procedure is already sufficient for ELO ontologies
containing axioms C v D where C is n-safe and D is safe:

Theorem 9. Let O be an ELO ontology containing only
axioms C v D such that C is n-safe and D is safe. Let G
be an n-safe concept, and S a set of axioms closed under the
rules in Table 2 such that G v G ∈ S and {o} v {o} ∈ S
for every nominal {o}. Then for every concept D occurring
in O, if O |= G v D, then G v D ∈ S.

Proof. Let S′ be the set of axioms derivable from ?: G v G
and ?: {o} v {o} for every nominal {o} using the rules
Table 4. We claim that for every ?: C v D ∈ S′, either
D is safe or C = D = {o} for some nominal {o}. This is
proved by induction over the application of rules in Table 4:

The base case for the initial axioms ?: G v G and
?: {o} v {o} holds trivially because G is safe.

Rule Rv derives only ?: C v E such that D v E ∈ O.
Therefore E is safe by assumption of the theorem.

For rule R−u , by induction hypothesis applied to the
premise ?: C v D1uD2, we have thatD1uD2 is safe (since
it is not a nominal). Then both D1 and D2 are safe, so the
claim holds for the conclusions ?: C v D1 and ?: C v D2.

For rule R−∃ , by induction hypothesis applied to the
premise ?: C v ∃R.D, we have that ∃R.D is safe (because
it is not a nominal). Then eitherD is a nominal, orD is safe.
Therefore, the claim holds for the conclusion ?: D v D.

For rules R+
>, R+

u , and R+
∃ , the claim holds for the pro-

duced conclusion ?: C v D, because D occurs in O and is
not a nominal, so it has to be safe.

For rule R{}, by induction hypothesis applied to the
premises ?: C v {a} and ?: D v {a}, we have C = D =
{a}, so the claim holds for the conclusion ?: {a} v {a}.

From the last case it follows, in particular, that S′ contains
only axioms derivable from the initial axioms without using
rule R{}. Since the remaining rules in Table 4 correspond
to the rules in Table 2, S closed under the rules in Table 2,
G v G ∈ S, and {o} v {o} ∈ S for every nominal {o}, it
follows that if ?: C v D ∈ S′ then C v D ∈ S.

Finally, assume that O |= G v D for some D occurring
in O. Then, by Theorem 7, ?: G v D ∈ S′. Therefore,
G v D ∈ S, which was required to show.

Example 10. We show that n-safety of G in Theorem 9 is
essential. Let G = {o} u ∃R.(A u {o}), O = {A v A},
S = {G v G, {o} v {o}, G v {o}, G v ∃R.(A u {o}),
A u {o} v A u {o}, A u {o} v A, A u {o} v {o}}.

Then S is closed under the rules in Table 2, O |= G v A,
but G v A /∈ S.

In spite of their rareness in practice, there are interesting
non-safe uses of nominals in ELO. One can state, e.g., that
Alice is the only female child of Bob and Mary: {alice} ≡
∃hasSex.{female}u∃isChildOf.{bob}u∃isChildOf.{mary}.

Conclusions and Outlook
This work is part of a bigger research agenda to develop ef-
ficient algorithms and implementations for all of OWL EL.
The present paper complements our previous work on rea-
soning with role compositions (Kazakov, Krötzsch, and
Simančík 2011b). Together, these contributions handle the
two features of OWL EL that have been argued to be most
difficult to implement efficiently (Krötzsch 2011).

Both features are now supported by the free and open
source reasoner ELK, which uses concurrent computation
strategies for highest performance (Kazakov, Krötzsch, and
Simančík 2011a). Support for nominals is currently imple-
mented using the overestimation optimization together with
axiom reuse. The additional optimization based on com-
puting of reachability components did not show any further
improvements in our experiments. Future work on ELK will
focus on the remaining features of OWL EL, e.g., datatype
support and local reflexivity (Self). Although we do not ex-
pect the same difficulties for these features, an efficient im-
plementation is still needed. Indeed, for practitioners, the
availability of tools like ELK plays a key role in the decision
for or against the use of new features, which ultimately de-
termines the overall success of KR languages like OWL EL.
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Appendix
Here we provide the full proof of properties (22) and (23)
from the proof of Theorem 4. For convenience, we restate
the properties here as properties (74) and (75).

For every concept D we have:

DI ⊇ {x[C] ∈ ∆I | [C] ⊆ [D]}. (74)

In addition, if D occurs in O, we have:

DI ⊆ {x[C] ∈ ∆I | [C] ⊆ [D]}. (75)

The proof is by induction on the construction of D:

Case D = A Then (74) and (75) follow from (18).

Case D = {a} By (20), we have DI = {x[{a}]}.
To prove (74), we will show that x[C] ∈ ∆I and [C] ⊆

[D] = [{a}] imply [C] = [{a}]. Since [C] ⊆ [{a}] already
holds, it remains to show that [{a}] ⊆ [C]. In order to do
that, take any D ∈ [{a}]. We will prove that D ∈ [C].

Since x[C] ∈ ∆I , by (21), C ∈ [C]. Since [C] ⊆ [{a}],
we have C ∈ [{a}]. Therefore, by (16), G  C ∈ S
and G : C v {a} ∈ S. Likewise, since D ∈ [{a}], by
(16), G  D ∈ S and G : D v {a} ∈ S. Since S is
closed under R{}, G : D v {a} ∈ S, G : C v {a} ∈ S,
G  D ∈ S, and G  C ∈ S, we have G : D v C ∈ S.
Since G  D ∈ S and G : D v C ∈ S, by (16), we have
D ∈ [C], which was required to be shown.

To prove (75), we have to show that for every x[C] ∈ DI ,
we have x[C] ∈ ∆I and [C] ⊆ [D]. This holds because
DI = {x[{a}]}, x[{a}] ∈ ∆I , and [{a}] ⊆ [D] = [{a}].

Case D = > In this case, DI = ∆I .
Inclusion (74) is obvious because DI = ∆I .
To prove (75), we have to show that for every x[C] ∈

DI = ∆I , we have [C] ⊆ [D] = [>], provided > occurs in
O. Take any E ∈ [C]. We will demonstrate that E ∈ [>].

SinceE ∈ [C], by (16),G E ∈ S andG : E v C ∈ S.
Since S is closed under R+

>, G  E ∈ S, and > occurs in
O, we obtain G : E v > ∈ S. Therefore, by (16), E ∈ [>],
which was required to be shown.

Case D = D1 uD2 We have DI = DI1 ∩DI2 .
To prove (74), we have to show that

DI1 ∩DI2 ⊇ {x[C] ∈ ∆I | [C] ⊆ [D1 uD2]}. (76)

By induction hypothesis applied to D1 and D2, we have

DI1 ∩DI2 ⊇ {x[C] ∈ ∆I | [C] ⊆ [D1] ∩ [D2]}. (77)

To prove (76), therefore, it suffices to show that

[D1 uD2] ⊆ [D1] ∩ [D2]. (78)

To prove (78), take any E ∈ [D1 u D2]. We will prove
that E ∈ [D1] and E ∈ [D2].

Since E ∈ [D1 uD2], by (16) we have G  E ∈ S and
G : E v D1 u D2 ∈ S. Since S is closed under R−u , we

have G : E v D1 ∈ S and G : E v D2 ∈ S. Therefore,
since G E ∈ S, by (16), E ∈ [D1] and E ∈ [D2], which
was required to be shown.

To prove (75), assume that D = D1 u D2 occurs in O.
We have to show that

DI1 ∩DI2 ⊆ {x[C] ∈ ∆I | [C] ⊆ [D1 uD2]}. (79)

SinceD1uD2 occurs inO, thenD1 andD2 occur inO, and
so, by induction hypothesis applied to D1 and D2, we have:

DI1 ∩DI2 ⊆ {x[C] ∈ ∆I | [C] ⊆ [D1] ∩ [D2]}. (80)

To prove (79), therefore, it suffices to show that

[D1] ∩ [D2] ⊆ [D1 uD2]. (81)

To prove (81), take any E ∈ [D1] ∩ [D2]. We will prove
that E ∈ [D1 uD2] provided D1 uD2 occurs in O.

Since E ∈ [D1] ∩ [D2], by (16), G  E ∈ S, G : E v
D1 ∈ S, and G : E v D2 ∈ S. Since D1 uD2 occurs in O
and S is closed under R+

u , we have G : E v D1 uD2 ∈ S.
Therefore, since G  E ∈ S, by (16), E ∈ [D1 u D2],
which was required to be shown.

Case D = ∃R.E In this case, we have

DI={x[C]∈∆I |∃x[E′]∈EI :〈x[C], x[E′]〉∈RI}. (82)

Or equivalently, by (19), we have

DI={x[C]∈∆I |∃x[E′] ∈ EI : [C] ⊆ [∃R.E′]}. (83)

To prove (74), take any x[C] ∈ ∆I such that [C] ⊆ [D] =

[∃R.E]. We have to show that x[C] ∈ DI .
Since x[C] ∈ ∆I , by (21), we have C ∈ [C]. Since [C] ⊆

[∃R.E], we have C ∈ [∃R.E], therefore, by (16), G C ∈
S and G : C v ∃R.E ∈ S. Since S is closed under R+

 ,
we have G  E ∈ S. Therefore, by (17), x[E] ∈ ∆I .
Since x[E] ∈ ∆I and [E] ⊆ [E], by induction hypothesis
(74) applied to E, we obtain x[E] ∈ EI . Since x[E] ∈ EI
and [C] ⊆ [∃R.E], by (83) (taking E′ := E), we obtain
x[C] ∈ DI , which was required to be shown.

To prove (75), assume that D = ∃R.E occurs in O. Take
any x[C] ∈ DI we have to show that [C] ⊆ [D] = [∃R.E].
Take any C ′ ∈ [C]. We will prove that C ′ ∈ [∃R.E].

Since x[C] ∈ DI , by (83), there exists E′ such that
x[E′] ∈ EI and [C] ⊆ [∃R.E′]. Since ∃R.E occurs in
O, E occurs in O. Therefore, by induction hypothesis (75)
applied to E, since x[E′] ∈ EI , we have [E′] ⊆ [E]. Since
x[E′] ∈ EI ⊆ ∆I , by (21), E′ ∈ [E′]. Since [E′] ⊆ [E],
we have E′ ∈ [E], and by (16), G : E′ v E ∈ S. Since
C ′ ∈ [C] ⊆ [∃R.E′], we have C ′ ∈ [∃R.E′]. Therefore,
by (16), G  C ′ ∈ S and G : C ′ v ∃R.E′ ∈ S. Since
G : C ′ v ∃R.E′ ∈ S, G : E′ v E ∈ S, ∃R.E occurs in O,
and S is closed under R+

∃ , we obtain G : C ′ v ∃R.E ∈ S.
Therefore, since G C ′, by (16), C ′ ∈ [∃R.E], which was
required to be shown.


