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Abstract. Despite the success of the Web Ontology Language OWL, the de-
velopment of expressive means for querying OWL knowledgeesas still an
open issue. In this paper, we investigate how a very natumcld@sirable form

of queries—namely conjunctive ones—can be used in coripgmetith OWL
such that one of the major design criteria of the latter—ngghecidability—can

be retained. More precisely, we show that querying theadtdetfragmen&.L™*

of OWL 1.1 is decidable. We also provide a complexity analysid show that
querying unrestricte& L™ is undecidable.

1 Introduction

Conjunctive queries originated from research in relaticladabases [1], and, more re-
cently, have also been identified as a desirable form of qgugexpressive description
logics (DLs) that are underlying OWL [2—6]. At the same tinractable fragments of
OWL are receiving increasing attention as they promiseawide a favourable balance
between expressivity and scalability. Such fragments hiaygarticular, been identified
as part of the OWL 1.1 proposahnd this raises the question how conjunctive queries
can be combined favourably with the underlying descripligics.

In this paper, we thus present the very first algorithm fomasg conjunctive
queries in the tractable£L™*-fragment ofSROZQ [7, 8], and thus of OWL 1.1. The
algorithm is based on an automata-theoretic formulatiocoofiplex role inclusion ax-
ioms that was also found useful in reasoning wRtROZQ [9, 10].

Our algorithm in particular allows us to derive a number ofngdexity results re-
lated to conjunctive query answeringd**. We first show that conjunctive queries
in &L are undecidable in general, and identify h&**-fragment of SROTQ as
an appropriate decidable sub-DL. Under some related ctéstrs of role inclusion ax-
ioms, we show that conjunctive query answering in gene@Bace-complete. Query
answering for fixed knowledge bases (query complexity) ashto be NP-complete,
whereas for fixed queries (schema complexity) it is meretpPyplete.

2 Preliminaries

We assume the reader to be familiar with the basic notiongséription logics (DLS).
The DLs that we will encounter in this paper &£** [7] and, marginallySROIQ

* This work has been supported by the European Commissiorr and&ract IST-2006-027595
NeOn, and by the Deutsche Forschungsgemeinschaft (DF @Y timel ReaSem project.
1 Seehttp://webont.org/owl/1.1/ for both.



[10]. A DL signatureconsists of a finite set able name<R, a finite set ofindividual
named, and a finite set ofoncept name€. We will use this notation throughout the
paper&EL™ supportsnominals which we conveniently represent as follows: for any
a € |, there is a concefa} € C such that{a)’ = {a’} (for any interpretation’).
As shown in [7], any6L** knowledge base is equivalent to oneniormal form only
containing the following axioms:

TBox: AC C AnBcLC C AcC 3IRC dJRAC C

RBox: RE T RoSCT
whereA, Be CU{T},C e CuU{L}, andR, S, T € R. Note that ABox statements of
the formsC(a) andR(a, b) are internalised into the TBox. The standard model théoret
semantics oEL"* can be found in [7]. Unless otherwise specified, the lefie®, E
in the remainder of this work always denote (arbitrary) @pimames, and the letters
R, S denote (arbitrary) role names. We do not consider conciateaths in this paper,
but are confident that our results can be extended accoyding|

For conjunctive querieswe largely adopt the notation of [6] but directly allow for
individuals in queries. LeV be a countable set ofariable namesGiven elements,
y € V U I, aconcept atonfrole aton) is an expressiof(x) with C € C (R(x,y) with
R € R). A conjunctive query s a set of concept and role atoms, read as a conjunction
of its elements. Byar(q) we denote the set of variables occurringginConsider an
interpretations with domain4?, and a functiomr : Var(q)ul — 4% such thatr(a) = a’
for all a e I. We define

I,reCXifr(x)eCf, and I,7kERXY)if(x(x),n(y)eR.

If there is somer such thatZ, = = A for all atomsA € g, we write7 | g and say that
I entails g We say thatj is entailed by a knowledge bak®, denotedB [ q, if all
models ofKB entailg.

We conclude this section with an important result on cornjuegjueries inSL**.

Theorem 1. For an 8L knowledge base KB and a conjunctive query g, the entail-
ment problem KB= q is undecidable. Likewise, checking class subsumptio&ift
extended with inverse roles or role conjunctions is undeiie, even if those operators
occur only in the concepts whose subsumption is checked.

Intuitively, the result holds since RBoxes can encode cdsftee languages, the inter-
section of which can then be checked with conjunctive ggénierse rolegole con-
junctions. This problem is undecidable (see [11] for a proGfearly, arbitrary role
compositions are too expressive when aiming for a decidaloleven tractable) logic
that admits conjunctive queries. We thus restrict our &tiarto the fragment oL
that is in the (decidable) description logdRO7 Q [10], and investigate its complexity
with respect to conjunctive query answering.

Definition 1. AnEL** RBox in normal form isegularif there is a strict partial order
< onR such that, for all role inclusion axioms;R S and Roc R, C S, we find R< S
orR =S (i=1,2). AnEL* knowledge base is regular if it has a regular RBox.

The existence of ensures that the role hierarchy does not contain cyclicroibge
cies other than through direct recursion of a single role.



Table 1. Closure rules for an interpretatioh w.r.t. some knowledge bad€B. In general, we
assume that,D e CU({T, L} andR;,R,,S € R.

secCt KBECCD

@ D? := Df U {6}

seCt KBECC3RD KB D C {a} foranyac |

@ =4 Ul R =RUGa D =Dlujg "heree=ecero
3) 6eC’ KBE CLC dRD KB D C {a} for somea € |
R = RT U {(6,a))
@ 6,y eRf  RCSeKB ) (6,e)eR{ (67)€eR; RioR,CSecKB
ST = ST U((6,e) ST = ST U((6.7))

3 Canonical models and reasoning automata fo£**

&L, like all Horn-DLs, allows for the construction eiinonicalor universalmodels.
By this we mean an interpretation that is in a sense most geagrong the models
of a givenEL™ knowledge base, satisfying exactly those formulae thaiagieal
consequences of the knowledge base. This notion could befized further (using the
concept of(bi)simulationbetween models), but we merely require canonical models to
guide us in the development and verification of a query ansgeidgorithm, and hence
we will confine ourselves to directly showing the relevarupmrties.

Consider a regular consiste®i_** knowledge bas&B. Here and in the following,
we assume w.l.0.g. th&B does not entaé ~ b (i.e.{a} = {b}) foranya, b € |. Indeed,
one can just replace all occurrencedafith a in this case, both withitKB and within
any query we wish to consider later on (and this case can leeteetin polynomial
time). Moreover, we assume that there is at least one ingi@lioh the language, i.e.
I # 0. We now provide an iterative construction of a modebf KB. Our goal is to
obtain a concise definition of a suitable canonical modelt Bono matter of concern
that the given construction does not terminate after fipitehny steps.

To simplify our arguments, we adopt a naming scheme for piatesiements of the
domain of7. Let4 be the smallest set such tHat 4 and, for anys € 4,C, D € C,
andR € R, we find thate;ccarp € 4. We will define such thatd; C 4.

For any two interpretationg; and 7, of KB, we say thaty; is smallerthan (or
equal to)7> if, forany F e CUR U {T}, F7* ¢ FJ2, The interpretatiod is defined to
be the smallest interpretation such thiatc 4, {a}’ := afor all a € I, and7 is closed
under the rules of Table 1. It is easy to see that this smafiesiretation exists.

The rules of Table 1 have the special property that each iohai is “initialised”
with at most one concept name. Formally, we define for eacheiés € 4, a concept
namex(s) as follows:

—if 6 €l,u(6) = {6},
— if § = €5.ccarp for somed’ € 47,C, D € C, Re R, then(6) := D.

Note that the above cases are indeed exhaustive and munelisive.



Lemma 1. The interpretatiory” as constructed above is a model of KB.

Proof. First note that the domain df is non-empty since we assume the existence of
at least one individual. We have to check that all axiomkBfare indeed satisfied. For
axioms of the fornC C JR.D this is obvious by rules (2) and (3) of Table 1. Similarly,
all role inclusion axioms are directly accounted for by sulé) and (5).

So it remains to show that axiongsof the formsC c D, JRCC D, andC,nC, C
D are satisfied. Obviously, whenewvee C’ (6 € AR.CY) for someC € C (andR € R),
we findKB = «(6) E C (KB E «(6) C dR.C). We conclude that, whenever the premise of
some axiom® as above is satisfied far then it is entailed by(6), and so its conclusion
D is a direct consequence g6) underKB. Thus® is satisfied by rule (1). O

We are most interested in the specific structure of the caabmiodel. Its construc-
tion attempts to preserve a form of tree-likeness, brokdw loyn the potential occur-
rence of nominals. Formally, this is expressed throughdheviing property.

Property 1. For any element € 47 that is not an individual{ ¢ 1), there is a unique
chain of elementsdy ... = § and role nameRy, ..., R«1 € R, such thatgy € | and,
foralli = 1,...,k, 6 € 47 is of the formé.ccrp With € = 6i-1 andR = R_;. This

is easily verified by observing that anyof the given form must have been entailed by
rule (2), and by applying a simple induction on the depth & émtailment. In this case,
we say thabt; generates viatheroleR ... R« (i =0,...,K).

The canonicity of the moddl manifests itself in the fact that structures in the model
are necessary logical consequences of given axioms.

Property 2. Consider element§ € € 47 such that generates via the rolesRy . .. Rk.
Then(6) C IRo.(...JRk.(e) .. .) is a consequence &IB. This is obvious by another
simple inductive argument that utilises the preconditioiithe applications of rule (3).

Property 3. For any 6, €) € R’, there is a chain of elemends= 6y. ..k = € and role
nameR (i =0,..., k- 1), such that

— (6i,6i+1) € RI is directly entailed by one of rules (2) and (3), and

— Ryo...0R1 C Ris aconsequence &B.
We show this by an inductive argument as follows: for the besse, assume that
(6, €) € RY follows from rule (2) or (3). Then the above condition clgaiblds. For the
induction step, assume that €) € R’ follows by applying rule (5) tdR; o R, C R, and
that the claim holds for the statemendsd) € R{ and ¢j, €) € Rf We easily can con-
struct from these assumptions a suitable chain of elemems the chains postulated
for R; andRy. Similarly, the second condition of the claim follows frohetassumption
thatR; o R, T Rand the induction hypothesis. Rule (4) is treated analdgous

In the remainder of this section, we investigate variousmaed presenting logical
inferences by means of automata. These encodings will plagjar role within our
subsequent query answering algorithm. We describe nomdigtistic finite automata
(NFA) A as tuplesQ4, 24, 4, 4, F7), whereQ4 is a finite set of stateg;# is a finite
alphabetg s : Q4 x Qg — 227 is a transition function that maps pairs of states to sets
of alphabet symbol$j 4 is the initial state, ané 4 is a set of final states.

2 A possibly more common definition is to map pairs of statessymabols to sets of states, but
the above is more convenient for our purposes.



Table 2. Completion rules for constructing an NFA from &£ ** knowledge bas&B.

(CR1) IfC’ € 6(C,C),C’' C D € KB, andD ¢ §(C,C) thens(C,C) := 6(C,C) U {D}.
(CR2) IfC;,C; € 6(C,C),C, N C, C D € KB, andD ¢ §(C,C) thens(C,C) := §(C,C) U {D}.
(CR3) IfC’ € §(C,C),C’ C AR D € KB, andR ¢ 6(C, D) thens(C, D) := §(C, D) U {R}.
(CR4) IfR € 6(C,D), D’ € §(D,D), ARD’ C E € KB, andE ¢ 6(C,C) thens(C,C) =
5(C,C) U {E}.
(CR5) IfRe §(C,D), L € §(D, D), and_L ¢ §(C,C) thens(C,C) := 6(C,C) U {L}.
(CR6) If{a} € 6(C,C) n (D, D), and there are stat€y, ..., C, such that
—Cie{C,T,Alu{{b}|bel},
- 0(Cj,Cj) = 0forall j=1,...,n-1,
- C,=D,
andé(D, D) ¢ 6(C,C) thens(C,C) := §(C,C) U §(D, D).
(CR7) IfRe §(C,D), RC S, andS ¢ 6(C, D) thens(C, D) := 6(C, D) U {S}.
(CR8) IfR; € 6(C,D),R; € 6(D,E), Rio R, C S, andS ¢ 6(C, E) thens(C, E) = §(C,E) U {S}.

Proposition 1. Given a regular6L** RBox, and some role R R, there is an NFA
A(R) over the alphabeR which accepts aword R.. R, iff Rio...ocR, C Risa
consequence of eve8/** knowledge base with the given RBox.

One possible construction for the required automaton isudsed in [10]. Intu-
itively, the RBox can be understood as a grammar for a redmtguage, for which an
automaton can be constructed in a canonical way. The retjaoestruction ofA(R)
might be exponential for some RBoxes. In [9], restrictioagdbeen discussed that pre-
vent this blow-up, leading to NFA of only polynomial size w.the RBox. Accordingly,
an RBox issimplewhenever, for all axioms of the forlR; c ST S,So R, C S, the
RBox does not contain a common subrBlef R; andR, for which there is an axiom of
theformRo S’ C R orS’ o RC R. We will usually consider only such simple RBoxes
whenever the size of the constructed automata matters.

Next we describe the construction of a novel kind of automabat encodes cer-
tain concept subsumptions entailed by&f** knowledge base. The automaton itself
is closely related to the reasoning algorithm given in [Ti, the representation of en-
tailments via nondeterministic finite automata (NFA) wik lssential for the query
answering algorithm in the following section.

Consider arl6L** knowledge bas&B. Given a concept nam& € C, we construct
an NFAAks(A) = (Q, 2, 6,1, F) that computes superconceptsfofwhere we omit the
subscript ifKB is clear from the context. S = F = Cu{T1},2 = CURU{T, 1}, and
i = A. The transition functio is initially defined asj(C,C) := {C, T} (for all C € Q)
andd(C, D) = 0 (for all C,D € Q with C # D), and extended iteratively by applying
the rules in Table 2. The rules correspond to completiorsrim§7, Table 2], though the
conditions for (CR6) are slightly relaxed, fixing a minortghi in the original algorithm.

Itis easy to see that the rules of Table 2 can be applied atarpasynomial number
of times. The words accepted ¥(A) are strings of concept and role names. For each
such wordw we inductively define a concept expresst@pas follows:

— if wis empty, therC,, = T,



— if w= Rvfor someR € R and wordv, thenC,, = AR.(C,),
— if w= Cvfor someC € C and wordv, thenC,, = Cn C,.

For instance, the wor@ RDE Stranslates int@€crpes = CMAR(DMEM3AS.T). Based
on the close correspondence of the above rules to the derivaies in [7], we can
now establish the main correctness result for the automata).

Theorem 2. Consider a knowledge base KB, concept A, and 4A) as above, and
let w be some word over the associated alphabet. Ther=KB C C,, iff one of the
following holds:

— A(A) accepts the word w, or
— there is a transitionL. € §(C,C) where C= T, C = A, or C = {a} for some
individual a.

In particular, A(A) can be used to check all subsumptions between A and someatomi
concept B.

The second item of the theorem addresses the cases Wieiriferred to be empty
(i.e. inconsistent) or where the whole knowledge base isnisistent, from which the
subsumption trivially follows. While the above yields ateahative formulation of the
EL™ reasoning algorithm presented in [7], it has the advanthgeit also encodes
all pathswithin the inferred models. This will be essential for ousu#ts in the next
section. The following definition will be most convenient fais purpose.

Definition 2. Consider a knowledge base KB, concepts &,®, and the NFAA(A) =
(Q,2,6,1,F). The automatotAkg(A, B) (or just A(A, B)) is defined agQ, R, 8,1, F’)
where F = 0if L € 6(A, A) and F = {B} otherwise, and’ is the restriction o to R.

The automatorA(A, B) normally accepts all words of roldg, ..., R, such that
AC ARy(...dR,.B...) is a consequence &fB, with the border case where= 0 and
KB E A C B. Moreover, the language accepted by the NFA is empty wherfeze L
has been inferred.

4 Deciding Conjunctive Queries forEL

In this section, we present a nondeterministic algorithat thecides the entailment of
a queryq with respect to some regular consistent knowledge B&seThe algorithm
constructs a so-callgatoof graphwhich establishes, for all interpretation®f KB, the
existence of a suitable functiarthat shows query entailment. Intuitively, a proof graph
encodes a fragment of the canonical mafeif Section 3.

Formally, a proof graph is a tupl&l(L, E) consisting of a set of nodé§ a labelling
functionL : N - C U {T}, and apartial transition functiorE : N x N — A, whereA
is the set of all NFA over the alphab@tu {T, L} UR. A nodem € N is reachablef
there is some nodee N such thate(n, m) is defined, andinreachabletherwise. The
nodes of the proof graph are abstract representations kel in the domain of the
canonical model of KB. The labels assign a concept to each node, the intuitiorgbein



Table 3. A nondeterministic algorithm for deciding conjunctive ges inEL*".

A. Query
factorisation

Select a (possibly empty) s&tc Var(q)
For eachx e X
Select some € Var(q) U | and replace all occurrencesin q with e
N := | U Var(q), let E be undefined for all arguments
Foreachacel, L(a) := {a}
For eachx € Var(q), selectL(x) € C U {T}
Foreactme N, ac€ |, E(n, a) := A(L(n), L(a))
While there is an unreachable node
Select some unreachabie Var(g), select some reachahte= N
10  E(n,x) := A(L(n), L(X))
C. Check proof |11 Foreachm e N, me Var(q)
graph 12 If E(n, m) is defined and accepts no word, terminate with failure
D. Check concepti3 For each concept atoB(n) € q
entailment (14  If notKB E L(n) C C, terminate with failure
E. Splitrole 15 For each role atorR(n,m) € q
automata 16  Compute shortest path= ng, ...,y = mfromntom
17  SplitA(R) into k automataA(R(n, m), Ng, Ny), . . . , A(R(N, M), N_1, N)
18  For eactA(R(N, m), ni_q, ;)
19 If A(R(n, M), ni_1, ny) accepts no word, terminate with failure
F. Checkrole |20 acc:= true
entailment |21 For eacm, me N with E(n, m) defined

B. Initialise proof
graph (N, L, E)

O©COoO~NOOUUDRWDNPE

22 lfmel

23 For each split automatafi(F, n, m)

24 If A(F, n,m) andE(n, m) do not accept a common word

25 acc:= false

26  Elseifme Var(q)

27 If no word is accepted bl¢(n, m) and all split automate(F, n, m)
28 acc:= false

29 If accis false, then terminate with failure
30 Else accept the query

that this is the “main concept(¢) defined in Section 3. Finally, the transition function
encodes role paths in the canonical model, which providbdaises for inferencing about
relationships between elements. It would be possible t@ptaanore concrete repre-
sentation for role paths (e.g. by guessing a single path)pbuformulation reduces
nondeterminism and eventually simplifies our investigatibalgorithmic complexity.

Our algorithm for deciding conjunctive query entailmengigen in Table 3. Any
occurrence of the word “select” in the description indisagenondeterministic choice
of the algorithm. Step A is a standard preprocessing stepnfoty query answering
algorithms. Step B initiates the proof graph and ensuresathaodes are reachable.
Variable nodes eventually are reachable through exactypsadecessor node, so the
structure of the proof graph resembles the canonical maaehare Property 1 of
Section 3). Steps C and D verify that the selected proof ghagded establishes the
existence of the required anonymous elements in the moder&the entailment of
the query’s concept atoms (D). At this stage, the proof gsdiiirepresents many pos-



sible fragments of the canonical model: the edge NFA thaheonto variable nodes
encode possible generating role paths (in the sense of RBydp&ection 3), each of
which leads to a dierent element in the canonical model. The edges leading-to in
dividual nodes have a slightly fiierent meaning: all of the paths they represent must
actually existin any model. Summing up, the proof graphr&presents many possible
matches between the query and a modé{Bf though a number of basic decisions on
the structure of the considered matches has already beemanddt is known that any
such match dftices to entail the concept atoms of the query.

Now Step E computes the RBox automaiéR) of Section 3 and applies a non-
deterministicsplitting operation, which we define next. We remark that the required
“shortest path” exists and is easily found in polynomialdisee [11]).

Definition 3. Consider an NFAA = (Q, 2, 6,i,{f}). A split of A into k parts is given
by NFAA,, . . ., A with A; of the form(Q, X, 6, -1, {q;}) such thatg = i, gk = f, and
gjeQforallj=1,...,k-1.

It is easy to see that, if each split automat@naccepts some wond;, we find that
Wi ... W is accepted byA. Likewise, any word accepted 3t is also accepted in this
sense by some split ofl. Since the combination of any split in general accepts less
words than#, splitting an NFA usually involves some don’t-know nondat@ism.

The intuition underlying this split is that each role NFA(R) encodes possible
chains of roles that sfice to establish rol®. Clearly, one such chain must be found
for every query atonR(n, m). But the proof graph already imposes a basic structure
that defines how elementsandm can be connected, and any match wikimust be
distributed along the paths of the proof graph. This is im@ated by the above split.

Finally, Step F again verifies the earlier choices of the itlgon by comparing the
(logically deducible) role chains given by the edge NFA witle role chains that the
split NFA require to exist for establishing a match. The cdstinction reflects the
different intention of edges leading to individual or variabbeles. For edges leading
to a variable node, only a single generating role path ekidtse canonical model, and
all split automata must match one such path (line 27). For edglirlg to hominal
nodes, all of accepted paths exist in every model. Hence2énienplements pairwise
comparisons of each split NFA with the edge NFA. Concretelémgntations for the
checks of lines 24 and 27 are discussed in Section 6.

We conclude this section with a small example. K& be the knowledge base
consisting of the following axioms:

AC JRB BC 3S.{a} ToRET {a} C dT.{b} {bjC A

with concept nameA andB, role name®, S andT, and individuals, b. Consider the
query{S(x,y), T(y, X)}.

In Step A, the algorithm replacegsby a to obtain the queryS(x, a), T(a, X)}. The
proof graph built in Step B has nodék = {a, b, x} with L(a) = {a}, L(b) = {b} and
L(x) = B. Edges are constructed between pairs of elementy,((b, a), (x, a), (X, b),
and p, x) (i.e. b generatex). The constructed edge NFA are distinguished only by
their start and end states (as rule (CR6) of Table 2 is not)uaad have the following
structure:



Step C succeeds since every edge automaton accepts someame8tep D is omit-
ted since no concept atoms appear in the query. The onlyiviahtole NFA is A(T)
which accepts any word that starts wikhfollowed by an arbitrary number d&. Due
to the presence of the query atdrta, X) this NFA must be split along the path froan
overb to x, and there is only one split into two NFA that accept nonentgatguages.
HenceA(T (a, X), a, b) accepts the single word, and A(T (a, X), b, X) accepts any se-
guence oR. The only other “split” NFAA(S(x, a), X, ) is directly given byA(S), the
NFA accepting only the wor&. Finally in Step F the three existing split automata are
compared to the corresponding edge NEA(T (a, X), a, b) and E(a, b) accept a com-
mon wordT, A(T (a, X), b, X) andE(b, x) accept a common world, andA(S(x, a), X, a)
andE(x, a) accept a common wore. Hence the query is accepted.

5 Correctness of the Algorithm

Proposition 2. Consider a regular consiste&tL™* knowledge base KB and a conjunc-
tive query qg. If the algorithm of Section 4 accepts q, thee@KBE g.

Proof. We use the notation from Section 4 to denote structures ctedpy the algo-
rithm. When terminating successfully, the algorithm haspated the following:

— A proofgraph (, L, E),
— For each role atorR(n, m) € g, ak-split A(R(n, m), no, N1), . .., A(R(N, M), Nk_1, Nk)
of the NFAA(R), wherek is the length of the shortest path franto min (N, L, E).

In the following, letZ be some model okB. To showKB k g, we need to provide
a mappingr as in Section 2 fo. SinceZ is arbitrary, this shows the entailment of
g. We can deriver from the proof graph, and then show its correctness baseteon t
conditions checked by the algorithm.

In Step A, the algorithm replaces variables by individuahea or by other vari-
ables. This is no problem: whenever a quetis obtained frong by uniformly replac-
ing a variablex € Var(qg) by an individuala € | (or variabley € Var(q)), we have that
KB E ¢ implieskKB E g. Indeed, any mapping for g’ can be extended to a suitable
mappingr for q by settingr(x) := af (n(X) := y¥). Thus we can assume w.l.0.g. that all
variablesx € Var(q) also occur as nodes in the proof graph, xe.N.

In Step F, the algorithm checks non-emptiness of the intémselanguages of the
NFA E(n, m), and ongall split NFA A(F, n, m), for eachn, m € N with E(n, m) defined.
Thus for any paim € N, m € Var(g), there is some worev accepted byall of the
given NFA. Choose one such wongn, m). By the definition of the split NFAw(n, m)
is a word overR, and we can assume this to be the case even when no split NEA (bu
just the single edge automaton) are considered for a givge. &gn, m) is of the form
A(L(n), L(m)) (Definition 2) for the selected labelgn) andL(m) of the proof graph.



Now by Theorem 2, the construction of Definition 2, and the faatkKB is consis-
tent, it is easy to see th&i(n, m) accepts the wordi(n,m) = R; ... R iff KB | L(n) C
AR;....dR.L(m). We employ this fact to inductively construct a mapping

In Step B the algorithm has defined labél&) for all x € Var(qg), and we will
retrace this process to constructWe claim that the following construction ensures
that, whenever a nodee N is reachabler(n) has been assigned a unique value such
that(n) € L(n)?. For starting the induction, se(a) := a’ for eacha € | (which is
necessarily reachable and clearly satisfi@ € L(a)’ = {a}’). Now assume thatin one
step the algorithm selected some Var(q) that was not reachable yet, and nade N
which is reachable. As noted abowB E L(n) C AR;....dR.L(X) wherew(n,X) =
R:...R;, and hence there is an element L(x)’ such that£(n).e) € Rl o... o R’
(whereo denotes forward composition of binary relations). Pick esnehe and set
n(X) = e. Itis easy to see that the claim of the induction is satisfied.

In Step D it has been verified tha{n) C C holds for eactC(n) € g (using stan-
dard polynomial time reasoning fé&£**), so we findr(n) € C. It remains to show
that a similar claim holds for all binary query atoms. Thusgsider some role atom
R(n,m) € g, and letn = ny, ..., ny = mdenote the shortest path in the proof graph used
to split the role automaton. So far, we have defingd;, n;1) only for cases where
ni;1 € Var(qg). By a slight overloading of notation, we now tn;, ni;1) for ni;; € |
denote some word accepted by the intersectioR(of, n;;1) and the specific split au-
tomatonA(R(n, m), n;, ni+1), which must exist as the algorithms must have verified non-
emptiness of the intersection language. Assuminguliat ni.1) = S;... S, we note
that this still entailKB | L(n;) C 3S;....3S,.L(nj;1) - Sincenj,y € 1, this actually
shows that#£(n;), 7(ni;1)) € S1 o...0 S.

The wordw = w(ng, ny) ... wW(nx_1, Nk) is accepted byA(R), which is clear from the
construction in Definition 3 as the pamgn;, n,1) are accepted by the respective split
automata. Assume that = R; ... R¢. We conclude(n), 7(m)) € Rl o ... o R from
the construction ofr and the above observations for the case of edges conneating t
individual elements. Thus by Proposition 1 we hawg), 7(m)) € R’ as required. O

It remains to show that the algorithm is also complete. Thiddne by demonstrat-
ing that there are suitable nondeterministic choices thabke the algorithm to accept
a query whenever it is entailed. To guide those choices, weahescanonical moddl
introduced in Section 3.

Proposition 3. Consider a regular consiste@L** knowledge base KB and a con-
junctive query g. If KB= q, then there is a sequence of nondeterministic choiceféor t
algorithm of Section 4 such that it accepts g.

Proof. Consider the canonical modélas constructed above. Sink® = qand’
KB, there is some mappingsuch thatZ, = = q. We will user to guide the algorithm.

In Step A, a variable € Var(q) is replaced by € Var(q) Ul wheneverr(X) = n(n).
For Step B, we choose the labellibgof the proof graph by setting(e) := «(z(€)). As
argued in the proof of Lemma &,e C’ iff KB = «(8) C C, and hence we conclude that
n(e) € C’ implies thatKB k= L(e) C C for all e € | U Var(q). Thus all unary atoms af
are accepted by the algorithm.



Now in each step of the generation of the edgex the proof graph, the algorithm
needs to pick some (unreachabte) Var(g) and some reachable nodé/Ne will utilise
the properties established in Section 3. By Property lettses unique generating chain
for eachn(x) wherex is not reachable within the proof graph yet. Moreover, since
the chain of Property 1 is unique and shortest, it is alsolacydence there is some
unreachable such thatr(x) is not generated by any element of the for(y) with y
unreachable. Pick one such elemgnFinally select one elemente | U Var(q) such
thatz(n) generatez(x), and such that there is no elememfor which z(m) generates
7(X) andn(n) generateg(m). Construct an edge(m, x).

Now for any elements andm of the query, withm € Var(q) andE(n, m) defined,
the automatofE(n, m) accepts a non-empty language. This is seen by combining Pro
erty 2 with Theorem 2, where the second case of the theorercigded sincekB is
consistent. The algorithm’s checks in Step C thus succeed.

The algorithm now has completed the proof graph constragéind the selection of
split automata is required next. For all query atdR(s, m), we find that £(n), 7(m)) €
R, and thus we can apply Property 3 to obtain a respective dialements and role
names, which we denote 86. ..6x andRy . .. Rc_; in the remainder of this proof.

Let j > O denote the largest index 64 . . . 6k, such thab; is of the formsn(ey) for
someeg; € |, if any such element exists. Otherwise, jet 0 denote the smallest index
such thab; is of the formr(e;) for anye; € Var(qg). We claim that there is a connection
betweenn ande; in the proof graph. Clearly, this is true & € | since these edges
were constructed explicitly. Otherwise, Property 1 and chaice ofe; imply that an
edge fromn to e; was constructed by the algorithm. Startingdys, find all elements
¢6; of the formr(e), e € Var(q), and label them consecutivelyes. . ., g. Note that this
sequence can be empty, in which case we défigel. Obviously,e = m. We claim
thatn = ey...q = mis the shortest path fromto mwithin the proof graph. We already
showed the connection betweer: e, ande;. The connections betweenande,; are
also obvious, since ea&h generates;,1 by definition. Since the latter path is also the
only path frome; to g, the overall path is clearly the shortest connection.

The algorithm now splitsA(R) along the patim = & ... = m. For eacle, there is
an indexj(i) such thabt;g = n(e). Hence, for each paig(, e.1), there is a correspond-
ing sequence of roleRjg.1 . . . Rji+1) which we denote by; (i = 0,...,1 — 1), and the
concatenation of those sequences yields the oridipal. Rc_;. By Proposition 1 and
Property 3, the automatafi(R) accepts the worBy . . . Rc_;1. To split the automaton, we
consider one accepting run and defipdo be the state of the automaton after reading
the partial sequenag, for eachi = 0,...,|1 — 1. The states; are now used to construct
the split automatefl;, and it is easy to see that those automata accept the seguence

Now assume that all required split automata have been emtsttin this way. Con-
sider any pair of query elemergse’ € | UVar(q) for which a split automatoiA(F, e, €)
was constructed using a partial sequence of ml&¥e claim that the edge automaton
E(e €) accepty. Indeed, this follows from Property 2 and Theorem 2. Thiswgho
non-emptiness of intersections between any single sylinaaton and the correspond-
ing edge automaton in the proof graph, and thuSes for the case wheet e I.

Finally, consider the case that € Var(g), and assume that two split automata
A(F, e &)andA(F’, e, &) have been constructed for the given pair, based on twagparti



role sequencesandr’. We claim that = r’. Indeed, this is obvious from the fact that
r andr’ both correspond to the unique generating sequence of rmi¢lsd elements
and¢, which is part of the sequence constructed for Property is Slows that is
accepted both byA(F, e, &) and by A(F’, e, €). We conclude that the intersection of all
split automata and the edge automalidp, €) is again non-empty.

The algorithm thus has completed all checks successfullaaoepts the query.O

6 Complexity of Query Answering for EL£**

Finally, we harvest a number of complexity results from tigmethm of Section 4.

Lemma 2. Given a regulai€L** knowledge base KB and a conjunctive query g, the
entailment problem KB= g is hard forNP w.r.t. the size of g, hard fdP w.r.t. the size

of the ABox of KB, and hard fd?Sace w.r.t. to the combined problem size, even when
restricting to simple RBoxes.

The hardness proofs in [11] apply known hardness resultthfodata-complexity of
instance checking in fragments 8 [12], evaluation of single Datalog clauses (NP-
complete, [13]), and emptiness of NFA intersection langsg® Sace-complete, [14]).
We remark that the above results are quite generic, and castalelished for many
other DLs. Especially, NP-hardness w.r.t. knowledge b&s®en be shown for any
logic that admits an ABox, whereas RR& hardness of the combined problem follows
whenever the DL additionally admits role composition anidtextial role restrictions.

Lemma 3. Given a regulai€L** knowledge base KB and a conjunctive query g, the
entailment problem KB= g can be decided iR w.r.t. the size of the knowledge base,
in NP w.r.t. the size of the query, and Race w.r.t. the combined problem size, given
that RBoxes are simple whenever KB is not fixed.

Proof. First consider Step A of Table 3. It clearly can be performeddeterministi-
cally in polynomial time. If the query is fixed, the number dfoices is polynomially
bounded, and so the whole step is executable in polynomial ti

Similar observations hold for Step B. Concept names andchzatmfor edges can be
assigned in polynomial time by a nondeterministic algaonitfand thus in polynomial
space). If the query has fixed size, available choices agaipaynomial in the size of
KB: the assignment of labelsadmits at mosiC|Va@! different choices, and for each
such choice, there are at modtpossible proof graphs, whends the number of nodes
in the graph. Sinca and|Var(q)| are considered fixed, this yields a polynomial bound.

Further nondeterminism occurs in Step E. But if the queryxedj each of the
polynomially many proof graphs dictates a number of sphita ts bounded by the size
of the querym. Since splitting a role NFA int& parts corresponds to selectikgnot
necessarily distinct) states from this NFA, there|@g|* different ways of splittingA.
Sincek is bounded by the size of the quary we obtain an upper bouri@™" that
is still polynomial in the size oKB (which, by our assumptions on simplicity of the
RBox, determines the maximum number of sta€@of some role NFA). If the query
is not fixed, splitting can be done nondeterministically alymomial time.



Now for Step F, the algorithm essentially has to check theterags of intersection
languages of various automata. Given NFA, .. ., A,, this check can be done in two
ways, each being worst-case optimal fdfelient side conditions of the algorithm:

(1) Initialise state variablegy,...,q as being the initial states of the involved NFA.
Then nondeterministically select one input symbol and caesition for this sym-
bol in each of the considered NFA, and update the stgtascordingly. The algo-
rithm is successful if at some stage eagls a final state of the automatofy. The
algorithm runs in NP&ck w.r.t. the accumulated size of the input automata.

(2) Iteratively compute the intersection NFA fat; = (Q;,2,6;,ij,Fj) andAj,1 =
(Qj+1, 2, j+1,1j+1, Fj+1). Thisintersection is the NFAF; X Qji1, 2, 6, (i, ij+1), Fjx
Fi+1), with 6((ag, by), (az, b2)) = 6(a1, a2) N 6(by, bo). The algorithm is successful if
the intersection is non-empty. This construction is potpra if the number of the
input NFA is known to be bounded.

Method (1) establishes a general (nondeterministic) potyial space procedure,
which by Savitch’s Theorem is also in R8e. Method (2) can be used to establish
tighter bounds in special cases: each intersection mighgeca quadratic increase of
the size of the NFA, but the number of required intersectistmunded ifKB or q are
fixed. Indeed, if the query is fixed, the number of requireérisg¢ctions is bounded by
the overall number of role atoms in the query. If the knowkedgse is fixed, the number
of interesting intersections is bounded by the number df N|lA that can be produced
from role NFA constructed from the RBox, which is bounded lixed value. In both
cases, checking intersections can be done determinigticgdolynomial time. O

The below table summarises some common complexity meaguréise case of
conjunctive query answering in regulaZ** knowledge bases. Whenever the RBox is
variable, we assume that it is simple. It should be rematkadtBox and ABox could
always be considered variable without increasing any ofithen complexities.

Variable parts:
QuenjRBox|TBox|ABox| Complexity

Combined complexity x X X X |PSeace-complete
Query complexity | x NP-complete
Schema complexity X X X P-complete
Data complexity X P-complete

7 Conclusion

We have proposed a novel algorithm for answering conjuacfieries if6.L** knowl-
edge bases, which is worst-case optimal under various ggns. To the best of our
knowledge, this also constitutes the first inference prooetbr conjunctive queries in
a DL that supports complex role inclusions (including cosipon of roles) in the sense
of OWL 1.1. Showing undecidability of conjunctive queries finrestricted L**, we
illustrated that the combination of role atoms in queried aomplex role inclusion
axioms can indeed make reasoning significantly moffecdit.



A compact automata-based representation of role claidgparts of) models al-
lowed us to establish polynomial bounds for inferencingdrious cases, thus identify-
ing querying scenarios that are still tractable&f**. Conjunctive queries inherently
introduce some nondeterministism, but automata can céewiyrepresent sets of pos-
sible solutions instead of considering each of them seglgrat/e therefore believe that
the presented algorithm can be a basis for actual implemensahat introduce addi-
tional heuristics to ameliorate nondeterminism.
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