
Description Logic Rules⋆

Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler

Universität Karlsruhe (TH), Germany, email: [mak|sru|phi]@aifb.uni-karlsruhe.de

Abstract. We introducedescription logic (DL) rulesas a new rule-based formal-
ism for knowledge representation in DLs. As a fragment of theSemantic Web
Rule Language SWRL, DL rules allow for a tight integration with DL knowledge
bases. In contrast to SWRL, however, the combination of DL rules with expres-
sive description logics remains decidable, and we show thatthe DLSROIQ – the
basis for the ongoing standardisation of OWL 2 – can completely internalise DL
rules. On the other hand, DL rules capture many expressive features ofSROIQ
that are not available in simpler DLs yet. While reasoning inSROIQ is highly
intractable, it turns out that DL rules can be introduced to various lightweight DLs
without increasing their worst-case complexity. In particular, DL rules enable us
to significantly extend the tractable DLsEL++ and DLP.

1 INTRODUCTION

The development of description logics (DLs) has been drivenby the desire to push
the expressivity bounds of these knowledge representationformalisms while still main-
taining decidability and implementability. This has lead to very expressive DLs such
asSHOIN, the logic underlying the Web Ontology Language OWL DL,SHOIQ,
and more recentlySROIQ [1] which is the basis for the ongoing standardisation of
OWL 21 as the next version of the Web Ontology Language. On the otherhand, more
light-weight DLs for which most common reasoning problems can be implemented in
(sub)polynomial time have also been sought, leading, e.g.,to the tractable DLEL++

[2].
Another popular paradigm of knowledge representation are rule-based formalisms

– ranging from logic programming to deductive databases. Similar to DLs, the expres-
sivity and complexity of rule languages has been studied extensively [3], and many
decidable and tractable formalisms are known. Yet, reconciling DLs and rule languages
is far from easy, and many works have investigated this problem.

In this paper, we introduceDL rules as an expressive new rule language for com-
bining DLs with first-order rules in a rather natural way thatadmits tight integration
with existing DL systems. Since DLs can be considered as fragments of function-free
first-order logic with equality, an obvious approach is to combine them with first-order

⋆ Extended technical report with proofs forMarkus Krötzsch, Sebastian Rudolph, Pascal Hitz-
ler: Description Logic Rules. Proceedings of the 18th European Conference on Artificial In-
telligence (ECAI-08). IOS Press 2008.

1 OWL 2 is the forthcoming W3C recommendation for updating OWL, and is based on the
OWL 1.1 member submission. Seehttp://www.w3.org/2007/OWL.

Horn-logic rules. This is the basis of theSemantic Web Rule Language SWRL[4], pro-
posed as a rule extension to OWL. However, reasoning becomesundecidable for the
combination of OWL and SWRL, and thus more restricted rule languages have been in-
vestigated. A prominent example areDL-safe rules[5], which restrict the applicability
of rules to a finite set of named individuals to retain decidability. Similar safety condi-
tions have already been proposed for CARIN [6] in the contextof the DLALCNR,
where also acyclicity of rules and Tboxes was studied as an alternative for retaining
decidability. Another basic approach is to identify the Horn-logic rules directly express-
ible in OWL DL (i.e.SHOIN), and this fragment has been calledDescription Logic
Programs DLP[7].

DL rules in turn can be characterised as a decidable fragmentof SWRL, which cor-
responds to a large class of SWRL rules indirectly expressible in SROIQ. They are
based on the observation that DLs can express only tree-likeinterdependencies of vari-
ables. The concept expression∃worksAt.University ⊓ ∃ supervises.PhDStudent that
describes all people working at a university and supervising some PhD student, e.g.,
corresponds to the following first-order formula:

∃y.∃z.worksAt(x, y) ∧ University(y) ∧ supervises(x, z) ∧ PhDStudent(z)

Here variables form the nodes of a tree with rootx, where edges are given by binary
predicates. Intuitively, DL rules are exactly those SWRL rules, where premises (rule
bodies) consist of one or more of such tree-shaped structures. One could, for example,
formulate the following rule:

worksAt(x, y) ∧ University(y) ∧ supervises(x, z) ∧ PhDStudent(z)→ profOf(x, z)

Since SWRL allows the use of DL concept expressions in rules,we obtainSROIQ
rules,EL++ rules, or DLP rules as extensions of the respective DLs. For the case of
SROIQ, DL rules have independently been proposed in [8], where a tool for editing
such rules was presented. As shown below, DL rules are indeed“syntactic sugar” in this
case, even though rule-based presentations are often significantly simpler due to the fact
that many rules require the introduction of auxiliary vocabulary for being encoded in
SROIQ. On the other hand, we also consider the light-weight DLsEL++ and DLP for
which DL rules truly extend expressivity, and we show that the polynomial complexity
of these DLs is preserved by this extension.

After providing some preliminary definitions in Section 2, we introduce DL rules
in Section 3. Section 4 shows how DL rules can be internalisedin SROIQ, while
Section 5 employs a novel reasoning algorithm to processEL++ rules directly. Finally,
Section 6 introduces DLP 2 and establishes the tractabilityof reasoning in this DL-
based rule language.

2 PRELIMINARIES

In this section, we recall the definition of the expressive description logicSROIQ [1].
We assume that the reader is familiar with description logics [9].

2

As usual, the DLs considered in this paper are based on three disjoint sets ofindi-
vidual namesNI , concept namesNC, androle namesNR containing theuniversal role
U ∈ NR.

Definition 1. A SROIQ Rbox forNR is based on a setR of rolesdefined asR ≔
NR∪ {R− | R ∈ NR}, where we setInv(R) ≔ R− andInv(R−) ≔ R to simplify notation. In
the sequel, we will use the symbols R,S , possibly with subscripts, to denote roles.

A generalisedrole inclusion axiom(RIA) is a statement of the form S1◦ . . .◦Sn ⊑ R,
and a set of such RIAs is a generalisedrole hierarchy. A role hierarchy isregularif there
is a strict partial order≺ onR such that

– S ≺ R iff Inv(S) ≺ R, and
– every RIA is of one of the forms:

R◦R⊑ R, R− ⊑ R, S1◦. . .◦Sn ⊑ R, R◦S1◦. . .◦Sn ⊑ R, S1◦. . .◦Sn◦R⊑ R

such that R∈ NR is a (non-inverse) role name, and Si ≺ R for i = 1, . . . , n.

The set ofsimpleroles for some role hierarchy is defined inductively as follows:

– If a role R occurs only on the right-hand-side of RIAs of the form S ⊑ R such that
S is simple, then R is also simple.

– The inverse of a simple role is simple.

A role assertionis a statement of the formRef(R) (reflexivity), Asy(S) (asymmetry),
or Dis(S,S′) (role disjointness), where S and S′ are simple. ASROIQ Rbox is the
union of a set of role assertions together and a role hierarchy. A SROIQ Rbox is
regular if its role hierarchy is regular.

Definition 2. Given aSROIQ RboxR, the set ofconcept expressionsC is defined as
follows:

– NC ⊆ C, ⊤ ∈ C, ⊥ ∈ C,
– if C,D ∈ C, R∈ R, S ∈ R a simple role, a∈ NI , and n a non-negative integer, then
¬C, C⊓ D, C⊔ D, {a}, ∀R.C,∃R.C,∃S.Self, ≤n S.C, and≥n S.C are also concept
expressions.

Throughout this paper, the symbols C, D will be used to denoteconcept expressions. A
SROIQ Tbox is a set ofgeneral concept inclusion axioms(GCIs) of the form C⊑ D.

An individual assertioncan have any of the following forms: C(a), R(a, b),¬R(a, b),
a 0 b, with a, b ∈ NI individual names, C∈ C a concept expression, and R,S ∈ R roles
with S simple. ASROIQ Abox is a set of individual assertions.

A SROIQ knowledge base KBis the union of a regular RboxR, and an AboxA
and TboxT for R.

We further recall the semantics ofSROIQ knowledge bases.

Definition 3. An interpretationI consists of a set∆I calleddomain(the elements of it
being calledindividuals) together with a function·I mapping

3

Name Syntax Semantics
inverse role R− {〈x, y〉 ∈ ∆I × ∆I | 〈y, x〉 ∈ RI}
universal role U ∆I × ∆I

top ⊤ ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

nominals {a} {aI}
univ. restriction ∀R.C {x ∈ ∆I | 〈x, y〉 ∈ RI impliesy ∈ CI}
exist. restriction ∃R.C {x ∈ ∆I | for somey ∈ ∆I , 〈x, y〉 ∈ RI andy ∈ CI}
Self concept ∃S.Self {x ∈ ∆I | 〈x, x〉 ∈ SI}
qualified number≤n S.C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ SI andy ∈ CI} ≤ n}
restriction ≥n S.C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ SI andy ∈ CI} ≥ n}

Fig. 1.Semantics of concept constructors inSROIQ for an interpretationI with domain∆I.

– individual names to elements of∆I,
– concept names to subsets of∆I, and
– role names to subsets of∆I × ∆I.

The function·I is inductively extended to role and concept expressions as shown in
Table 1. An interpretationI satisfiesan axiomϕ if we find thatI |= ϕ:

– I |= S ⊑ R if SI ⊆ RI,
– I |= S1 ◦ . . . ◦ Sn ⊑ R if SI1 ◦ . . . ◦ SIn ⊑ RI (◦ being overloaded to denote the

standard composition of binary relations here),
– I |= Ref(R) if RI is a reflexive relation,
– I |= Asy(R) if RI is antisymmetric and irreflexive,
– I |= Dis(R,S) if RI and SI are disjoint,
– I |= C ⊑ D if CI ⊆ DI.

An interpretationI satisfiesa knowledge baseKB (we then also say thatI is a
modelof KB and writeI |= KB) if it satisfies all axioms ofKB. A knowledge baseKB
is satisfiableif it has a model. Two knowledge bases areequivalentif they have exactly
the same models, and they areequisatisfiableif either both are unsatisfiable or both are
satisfiable.

Further details onSROIQ can be found in [1]. We have omitted here several syntac-
tic constructs that can be expressed indirectly, especially Rbox assertions for transitivity,
reflexivity of simple roles, and symmetry.

3 DESCRIPTION LOGIC RULES

In this section, we formally introduceDL rules as a syntactic fragment of first-order
logic.

4

Definition 4. Consider some description logicL with concept expressionsC, individ-
ual namesNI , rolesR (possibly including inverse roles), and letV be a countable set of
first-order variables. Given terms t, u ∈ NI ∪V, a concept atom (role atom)is a formula
of the form C(t) (R(t, u)) with C ∈ C (R ∈ R).

To simplify notation, we will often use finite sets S of (role and concept) atoms for
representing the conjunction

∧
S . Given such a set S of atoms and terms t, u ∈ NI ∪ V,

a pathfrom t to u in S is a non-empty sequence R1(x1, x2), . . . ,Rn(xn, xn+1) ∈ S where
x1 = t, xi ∈ V for 2 ≤ i ≤ n, xn+1 = u, and xi , xi+1 for 1 ≤ i ≤ n. A term t in S isinitial
(resp.final) if there is no path to t (resp. no path starting at t).

Given sets B and H of atoms, and a setx ⊆ V of all variables in B∪H, adescription
logic rule (DL rule)is a formula∀x.

∧
B→

∧
H such that

R1 for any u∈ NI ∪ V that is not initial in B, there is a path from exactly one initial
t ∈ NI ∪ V to u in B,

R2 for any t, u ∈ NI ∪ V, there is at most one path in B from t to u,
R3 if H contains an atom of the form C(t) or R(t, u), then t is initial in B.

Here∀x for x = {x1, . . . , xn} abbreviates an arbitrary sequence∀x1. . . .∀xn. Since we
consider only conjunctions with all variables quantified, we will often simply write
B→ H instead of∀x.

∧
B→

∧
H.

A rule base RBfor some DLL is a set of DL rules forL.

The semantics of DL rules in the context of a description logic knowledge base
is given by interpreting both the rules and knowledge base asfirst-order theories in
the usual way, and applying the standard semantics of predicate logic. This has been
discussed in the context of SWRL in [4], and we will not repeatthe details here.

Note that Definition 4 ensures that role atoms in rule bodies essentially form a
(set of) directed trees, starting at initial elements. Since all but the first and last ele-
ments of a path must be variables, individuals effectively break paths apart. For ex-
ample, the following might be the body of a DL rule ifa andb are individual names:
{R(x, a),S(a, z),S′(a, z′),T(z, b),T′(z′, b)}. Using the well-known equivalence of for-
mulae{p → q1 ∧ q2} and {p → q1, p → q2}, one can transform any rule into an
equivalent set of rules without conjunctions in rule heads.Since this can be done in
linear time, we will assume without loss of generality that all DL rules are of this form.

Moreover, since all DLs considered in this work support nominals, we will assume
without loss of generality that all terms in rules are variables. Indeed, any atomC(a)
with a ∈ NI can be replaced byC(x) ∧ {a}(x) for some new variablex ∈ V. In the
presence of inverse roles, role atoms with individual namescan be replaced by con-
cept atoms as follows:R(x, a) becomes∃R.{a}(x), R(a, y) becomes∃ Inv(R).{a}(y), and
R(a, b) becomes∃R.{b}(x) ∧ {a}(x). A similar transformation is possible for rule heads,
where generated concept atoms{a}(x) are again addedto the rule body.

Before proceeding with the formal treatment of DL rules in concrete description
logics, let us consider some relevant special applicationsof DL rules.

Concept productsRules of the formC(x)∧D(y)→ R(x, y) can encodeconcept products
(sometimes writtenC×D ⊑ R) asserting that all elements of two classes must be related
[10]. Examples include statements such asElephant(x)∧Mouse(y)→ biggerThan(x, y)
or Alkaline(x) ∧ Acid(y)→ neutralises(x, y).

5

Local reflexivity, universal roleRules of the formsC(x) → R(x, x) andR(x, x)→ C(x)
can replace theSROIQ Tbox expressionC ⊑ ∃R.Self and∃R.Self ⊑ C. The universal
role U of SROIQ can be defined as⊤(x) ∧ ⊤(y) → U(x, y). Hence, a DL that permits
such rules does not need to explicitly introduce those constructs.

Qualified RIAs DL rules of course can express arbitrary role inclusion axioms, but
they also can state that a RIA applies only to instances of certain classes. Examples
includeWoman(x) ∧ hasChild(x, y) → motherOf(x, y) and trusts(x, y) ∧ Doctor(y) ∧
recommends(y, z) ∧ Medicine(z)→ buys(x, z).

4 DL RULES IN SROIQ

In this section, we show how knowledge bases of such rules canbe completely inter-
nalised into the DLSROIQ. First, however, we adopt the notions ofregularity and
simplicity to DL rule bases inSROIQ.

Definition 5. Consider a rule baseRB and a knowledge baseKB for SROIQ. The set
of simple rolesof KB∪RB is the smallest set of roles containing every role R for which
the following conditions hold:

– If R or Inv(R) occur on the right-hand-side of some RIA ofKB, then this RIA is of
the form S⊑ R or S⊑ Inv(R), and S is simple.

– If R or Inv(R) occur in some rule head of the form R(x, y) or Inv(R)(x, y) in RB,
then the according rule body is of the form S(x, y) with S simple, or of the form
C(x) where x= y.

Note that this is indeed a proper inductive definition, whereroles that do not occur
on the right of either RIAs or rules form the base case. The extended knowledge base
KB∪RB isadmissibleforSROIQ if all roles S(i) occurring in concept (sub)expressions
of the form≤n S.C, ≥n S.C, ∃S.Self, and Dis(S1,S2), and in role atoms of the form
S(x, x) (x ∈ V) are simple.

An extended knowledge baseKB ∪ RB is regularif there is a strict partial order≺
onR such that

– S ≺ R iff Inv(S) ≺ R,
– the role box ofKB is regular w.r.t.≺, and
– for any rule B→ R(x, y), each S(z, v) ∈ B satisfies one of the following:
• S ≺ R, or
• there is no path from v to y, or
• S = R, there is no other R(z′, v′) ∈ B with a path from v′ to y, and we find that:

either x= z and there is no C(x) ∈ B, or y= v and there is no C(y) ∈ B.

Note that RIAs in regularSROIQ knowledge bases are allowed to have two special
forms for transitivity and symmetry, which we do omit for thedefinition of regularity
in DL rules to simplify notation. SinceS in S(x, x) is simple, we can replace such role
atoms by concept atomsC(x) whereC is a new concept name for which a new axiom

6

C ≡ ∃S.Self is added. We will thus assume that no role atoms of this form occur in
admissible knowledge bases.

In the remainder of this section, we show that checking the satisfiability of extended
SROIQ knowledge bases that are admissible and regular is decidable, and has the
same worst-case complexity as reasoning inSROIQ. This is achieved by a polynomial
transformation of rule bases intoSROIQ axioms. The first step of doing this is to
replace “dead branches” of the tree-shaped query body by DL concepts. The proof is a
variation of the “rolling-up” technique used for conjunctive query answering [11].

Lemma 6. Any DL rule B→ H for SROIQ can be transformed into a semantically
equivalent rule B′ → H such that all paths in B′ are contained in a single maximal
path. If H = R(x, y), then y is the final element of that maximal path, and if H= C(x)
then there are no paths in B. A rule with these properties is called linearised.

Proof. We provide an iterative reduction algorithm for transformingB into B′. Initially,
we setB′ ≔ B. Every iteration of the algorithm proceeds in two steps:

S1 For each variablex ∈ V in B′, let S = {C1(x), . . . ,Cn(x)} be the set of all concept
atoms inB′ that refer tox, and setB′ ≔ (B′ \ S) ∪ {(C1 ⊓ . . . ⊓Cn)(x)}.

S2 LetR(x, y) ∈ B′ be any atom wherey is a final term inB such thatH is not of the
form S(z, y) for a variablez. If no such atom exists, the algorithm terminates and
returnsB′. Otherwise, letD denote the (unique by S1) concept such thatD(y) ∈ B,
and letD denote⊤ if no concept with variableyexists. NowB′ is changed by setting
B′ ≔ (B′ \ {R(x, y),D(y)}) ∪ {(∃R.D)(x)}

Clearly, this algorithm terminates after a linear number ofiterations, since it reduces the
number of role atoms inB′ in every non-final iteration. Moreover,B′ after termination
cannot contain final terms that are part of some path, unless they occur as the second
argument of the rule head. Thus all paths, if any, end in this final element, and ifH =
C(x) then all paths have been reduced.

This shows that the result has the required form. It remains to verify thatB′ → H
is semantically equivalent toB → H. By construction, the final variabley chosen for
elimination is a variable that occurs in at most one concept atom but not inH (since
it is neither the second term inH nor initial in B). Now it is easy to see that the com-
puted rules before and after one iteration are semanticallyequivalent. By induction, the
algorithm thus returns a rule that is semantically equivalent to its input. �

As an example, the DL rule that was given in the introduction can be simplified to
yield:

∃worksAt.University(x) ∧ supervises(x,z) ∧ PhDStudent(z)→profOf(x,z)

The proof of Lemma 6 also shows that, in the presence of inverse roles, condition (R1)
of Definition 4 can be relaxed as follows:

R1’ for anyu ∈ NI ∪ V that is not initial inB, there is a path from oneor moreinitial
elementst ∈ NI ∪ V to u in B.

7

Indeed, using inverse roles, one can eliminate those initial elements that are not required
by (R3) just like the final elements in the above proof.

The above transformation allows us to reduce tree-shaped rules to rules of only
linear structure that are much more similar to RIAs inSROIQ. But while all role atoms
now belong to a single maximal path, rules might still contain disconnected concept
atoms. The ruleR(x, y)∧S(u, v)∧C(z)→ T(x, v), e.g., is rewritten to∃R.⊤(x)∧S(u, v)∧
C(z)→ T(x, v).

We now show that DL rules inSROIQ can indeed be internalised.

Theorem 7. Consider a rule baseRB and a knowledge baseKB for SROIQ, such
that RB ∪ KB is admissible. There is aSROIQ knowledge baseKBRB that can be
computed in time polynomial in the size ofRB, such thatKB ∪RB andKB ∪KBRB are
equisatisfiable.

Moreover, ifKB ∪ RB is regular, thenKB ∪ KBRB is also regular.

Proof. We can assume that all rules in RB are in the form defined in Lemma 6. Indeed,
the transformation used in this lemma preserves simplicityof roles in KB∪ RB, since
it only affects rules entailing non-simple roles. Moreover, since thetransformation may
only remove role atoms from rule bodies, it also preserves regularity of KB∪ RB.

We can assume without loss of generality that RB contains no rule with the universal
roleU in its head – clearly such rules are tautological (yet, they would formally violate
the requirement of regularity given the below transformations).

Rules can easily be transformed into an equivalent rule suchthat all variables occur-
ring in rule heads do also occur in the according rule bodies,by simply adding atoms
⊤(x) to the body if required. Moreover, for any ruleB→ R(x, y), Lemma 6 asserts that
B contains at most one maximal path with final elementy, and all role atoms ofB (if
any) are part of that path. Letz be the initial element of the maximal path if it exists,
and letz bey otherwise. Now ifx , z, thenx occurs inB only in concept atomsC(x),
and we can add a role atomU(x, z) to B without violating (R1)–(R3). Moreover, this
change preserves the semantics of the rule sinceU(x, z) is true for any variable assign-
ment (mapping free variables to domain elements ofI; sometimes also calledvariable
binding[4]) in any interpretation. Regularity of the role base is preserved since we can
assume without loss of generality thatU is the least element of≺ (which is feasible
sinceU does not occur in rule heads). Simplicity is not a concern sinceR by assump-
tion is not a simple role in KB∪ RB. In summary, we can assume that the body of
any rule with headR(x, y) has been transformed to contain exactly one maximal path
starting atx and leading toy.

We now describe the step-wise computation of KBRB. Initially, we set KBRB ≔ ∅,
and define the set of remaining rules as RB′

≔ RB. The reduction proceeds iteratively
until RB′ is empty. In every step, we select some ruleB → H ∈ RB. Note that by
Lemma 6, there is only a single maximal path of roles inB, all role atoms inB are part
of that path, and all but adjacent variables in the path are distinct (there are no cycles).
We distinguish various cases:

(1) If B contains two concept atomsD(z) andD′(z) referring to the same variablez,
then both atoms are deleted fromB and a new atom (D ⊓ D′)(z) is added.

8

(2) Otherwise, ifH = C(x) andB = D(x), thenB → H is removed from RB′, and a
Tbox axiomD ⊑ C is inserted into KBRB.

(3) Otherwise, ifH = R(x, y) andB is of the form{R1(x, x2), . . . ,Rn(xn, y)}, thenB→ H
is removed from RB′, and an Rbox axiomR1 ◦ . . . ◦ Rn ⊑ R is inserted into KBRB.

(4) Otherwise, ifH = R(x, y), and there is someD(z) ∈ B such thatz occurs in some
role atom ofB or H (in first or second argument position), then the following is
done. First, a new role nameS is introduced, and the Tbox axiomD ≡ ∃S.Self is
added to KBRB. Second, a new variablez′ ∈ V is introduced, the role atomS(z, z′)
is added toB, every role atomT(x′, z) ∈ B is replaced byT(x′, z′), and every role
atomT(z, y′) ∈ B is replaced byT(z′, y′). Finally, the atomD(z) is removed from
B, and ifz= y then the rule head is replaced byR(x, z′).

(5) Otherwise, ifH = C(x) or H = R(x, y), and there is someD(z) ∈ B such that
z occurs neither inH nor in any role atom ofB, then the following is done. IfB
contains some atom of the formR(x, t) so there is no atom of the formD′(x) ∈ B,
then defineu ≔ y; otherwise defineu ≔ x. Now D(z) in B is replaced by the
concept atom∃U.D(u).

We verify the correctness of the algorithm in multiple steps.

Claim 1 The cases distinguished by the algorithm are exhaustive.
We need to show that all cases that do not satisfy the precondition of case (1)–(4)

must satisfy the conditions of (5). IfH = C(x), then the non-applicability of (1) and (2)
ensure that a requiredD(z) ∈ B exists, and by Lemma 6 there are no role atoms inB at
all. Otherwise, ifH = R(x, y), then non-applicability of (3) ensures that there is some
concept atomD(z) ∈ B: initially and in each construction step, role atoms are always
required to form a chain as in (3). But then either (4) or (5) must be applicable.

Claim 2 The algorithm terminates after a polynomial number of steps.
(1) and (4) strictly reduce the number of concept atoms for a rule. Since no step

increases the number of such atoms in a rule, (1) and (4) can only applied once for
any concept atom occurring in any role. (2) and (3) reduce thenumber of rules, and
again this can happen only a linear number of times. Finally,(5) reduces the number of
concept atoms that do not contain variables that occur in thehead. Again, no other step
introduces such atoms and hence (5) is applicable only a linear number of times.

Claim 3 The computed knowledge base KB∪ KBRB is aSROIQ knowledge base.
We need to verify the correct use of simple and non-simple roles in all axioms.

First note that (4) is the only case where new concept expressions are introduced that
might violate simplicity restrictions. However, since theinvolved rolesS are new, they
are trivially simple. It remains to verify that all transformations preserve simplicity of
roles, i.e. that all roles that are simple in KB∪ RB are also simple in KB∪ KBRB. This
is obvious since simple roles can occur only in rules that aretransformed by (2) without
prior modifications.

Claim 4 After termination of the algorithm, KB∪RB and KB∪KBRB are equisatisfiable.
The claim follows by induction if every single step preserves satisfiability. Hence

let KB0/RB0 and KB1/RB1 be the sets KBRB/RB′ before and after the application of

9

one transformation step. We need to show that KB∪ KB0 ∪RB0 and KB∪ KB1 ∪RB1

are equisatisfiable.
The cases (1), (2), and (3) clearly yield semantically equivalent results.
For case (4), we find that KB1 = KB0 ∪ {D ≡ ∃S.Self}. Clearly, KB∪ KB0 ∪ RB0

and KB∪KB1∪RB0 are equisatisfiable sinceS is new. We show that KB∪KB1∪RB0

and KB∪ KB1 ∪ RB1 are equivalent. To this end, first observe that for any modelI of
KB1, we find thatSI = {〈δ, δ〉 | δ ∈ DI}. Now let B0 → H0 andB1 → H1 denote the
transformed rule before and after the translation step.

For the one direction, consider some interpretationI such thatI |= KB∪KB1∪RB0.
Thus, for all variable assignmentsZ, we find (B0 → H0)I,Z = true (where we silently
equate each set of atoms with the conjunction of its elements). If Z is such thatZ(z) ,
Z(z′) or Z(z) < DI, thenBI,Z1 = falseand we find (B1 → H1)I,Z = true. Otherwise, we
have thatBI,Z0 = true by the construction ofB1, and henceHI,Z0 = true by assumption.

But then againHI,Z1 = trueand (B1→ H1)I,Z = trueas required. This shows thatI is a
model ofB1→ H1. Since all other formulae in KB∪KB1 ∪RB0 and KB∪KB1∪RB1

agree, we find thatI |= KB ∪ KB1 ∪RB1 as required.
For the other direction, assume thatI |= KB ∪ KB1 ∪ RB1, and again consider any

variable assignmentZ such thatBI,Z0 = true. A variable assignmentZ′ is defined by
settingZ′(z′) ≔ Z(z), andZ′(x) ≔ Z(x) for all x , z′. It is easy to see thatBI,Z

′

1 = true

and henceHI,Z
′

1 = true by assumption. As before, we conclude thatHI,Z
′

0 = true. But

sinceZ′ agrees withZ on all variables occurring inH0, this impliesHI,Z0 = true and
hence we findI |= B0→ H0 as required. This finishes case (4).

For case (5), we use againB0→ H andB1→ H to denote the modified rule before
and after the translation step, and letI be any interpretation. For the first direction,
assume thatI |= B0 → H. Now consider any variable assignmentZ such thatBI,Z1 =

true. Then, using the notation of (5),∃U.D(u)I,Z = true. Especially, there is some
domain elementδ ∈ ∆I such thatδ ∈ DI. A variable assignmentZ′ is obtained by
settingZ′(z) ≔ δ, andZ′(x) ≔ Z(x) for all x , z. ThenD(z)I,Z

′

= trueand, sincezdoes
not occur in any other atom (by non-applicability of (1) and the precondition of (5)) we
also findBI,Z

′

0 = true. But thenHI,Z
′

= HI,Z = true by assumption, which shows the
requiredI |= B1→ H.

For the other direction, assume thatI |= B1 → H, and consider a variable assign-
mentZ such thatBI,Z0 = true. ThenD(z)I,Z = true, and we find thatZ(z) ∈ DI. But then
∃U.D(u)I,Z for any variableu, and henceBI,Z1 = true. Again this impliesHI,Z = true
and we concludeI |= B0→ H.

Claim 5 If KB ∪RB is regular, then so is KB∪ KBRB.
By Definition 5, the RIA created in case (3) satisfies all conditions of regularity as

long as the transformed ruleB → H did (where one might use the same ordering≺).
Since regularity clearly is not affected by cases (1) and (2), it remains to show that (4)
and (5) preserve regularity of the extended knowledge base.

For case (4) this is indeed the case, since the new roleS can by chosen to be≺-
smaller than the roleR in the rule head. Then regularity can only be affected ifS intro-
duces a new initial or final element to the maximal path inB, where a role atomR(s, t)
had been in an initial or final position before. However, in this case the reduced concept

10

atomD(z) would be of the formD(x) or D(y), and in both cases addingS(z1, z2) does
not affect regularity by Definition 5.

For case (5) the claim again follows since adding a concept∃U.D(u) can affect
regularity only if B contains an atomR(s, t) that forms the first or last segment of the
maximal path. IfR(s, t) is the first segment, thenu is chosen to bey and hence preserves
regularity. OtherwiseR(s, t) must be the final segment, and by settingu = x regularity
again is preserved.

The above claims together yield the required proof. �

Considering again our introductory example, we arrive at the following SROIQ
axioms (whereS1,S2 are new auxiliary roles):

S1 ◦ supervises ◦ S2 ⊑ profOf

∃worksAt.University ≡ ∃S1.Self PhDStudent ≡ ∃S2.Self

Based on Theorem 7, we conclude that the problem of checking the satisfiability of
SROIQ knowledge bases extended with DL rules is decidable, as longas the extended
knowledge base is admissible and regular. Since the internalisation is possible in poly-
nomial time, the worst-case complexity for this problem is the same as for checking
satisfiability ofSROIQ knowledge bases.

5 DL RULES IN EL++

In this section, we investigate DL rules for the DLEL++ [2], for which many typical
inference problems can be solved in polynomial time. AsEL++ cannot internalise DL
rules, they constitute a true extension of expressivity. Wetherefore take a different ap-
proach than inSROIQ: instead of considering rule bases as an auxiliary set of axioms
that is successively reduced and internalised, we introduce DL rules as core expressive
mechanism to which all otherEL++ axioms can be reduced. WhileEL++ rule bases
offer many expressive features formerly unavailable inEL++, we show that the com-
plexity of core inference problems remains tractable. We simplify our presentation by
omitting concrete domains fromEL++ – they are not affected by our extension and can
be treated as shown in [2].

Definition 8. A role ofEL++ is a (non-inverse) role name. AnEL++ Rbox is a set of
generalised role inclusion axioms, and anEL++ Tbox (Abox) is aSROIQ Tbox (Abox)
that contains only the following concept constructors:⊓, ∃, ⊤, ⊥, as well as nominal
classes{a}. AnEL++ knowledge baseis the union of anEL++ Rbox, Tbox and Abox.
AnEL++ rule baseis a set of DL rules forEL++ that do not contain atoms of the form
R(x, x) in the body.

Note that we do not have any requirement for regularity or simplicity of roles in
the context ofEL++. It turns out that neither is relevant for obtaining decidability or
tractability. The case ofR(x, x) in bodies is not addressed by the below algorithm – [12]
significantly extends the below approach to cover this and other features. Since it is
obvious that both concept and role inclusion axioms can directly be expressed by DL
rules, we will consider onlyEL++ rule bases without any additionalEL++ knowledge
base axioms. We can restrict our attention toEL++ rules in a certain normal form:

11

Definition 9. An EL++ rule baseRB is in normal formif all concept atoms in rule
bodies are either concept names or nominals, all variables in a rule’s head also occur
in its body, and all rule heads are of one of the following forms:

A(x) ∃R.A(x) R(x, y)

where A∈ NC∪{{a} | a ∈ NI }∪{⊤,⊥} and R∈ NR. A setB of basic concept expressions
for RB is defined asB ≔ {C | C ∈ NC,C occurs inRB}∪{{a} | a ∈ NI , a occurs inRB}∪
{⊤,⊥}.

Proposition 10. AnyEL++ rule base can be transformed into an equisatisfiableEL++

rule base in normal form. The transformation can be done in polynomial time.

Proof. First note that, sinceEL++ supports no inverse roles, individual names in rule
heads cannot always be reduced as described in Section 3. We will therefore assume
that, initially, rules in RB may contain role atoms of the form R(a, x) with a ∈ NI (while
all other individual occurrences have been removed as describe before).

The transformation algorithm iteratively transforms RB. In each iteration, a rule
B→ H that is not in normal form yet is selected from RB, and one of the following is
done:

– if H is of the formR(a, y) with a ∈ NI , thenB → H is replaced by the ruleB ∪
{{a}(x)} → R(x, y) wherex ∈ V is new,

– if H is of the form∃R.C(x) with non-basicC < B, then the ruleB→ H is replaced
by two new rulesB→ ∃R.A(x) andA(x)→ C(x) whereA ∈ NC is new,

– if H is of the form (C ⊓ D)(x), then the ruleB→ H is replaced by two new rules
B→ C(x) andB→ D(x),

– if B contains an atom of the form∃R.C(x), it is replaced by two new atomsR(x, y)
andC(y) wherey ∈ V is new,

– if B contains an atom of the form (C⊓ D)(x), it is replaced by two new atomsC(x)
andD(x),

– if B contains an atom of the formR(a, y) with a ∈ NI , it is replaced by two new
atomsR(x, y) and{a}(x) wherex ∈ V is new.

It is easy to see that the transformation yields an equisatisfiable EL++ rule base in
normal form, the size of which is polynomial in the size of theoriginal rule base. �

When checking satisfiability ofEL++ rule bases, we can thus restrict to rule bases
in the above normal form. A polynomial algorithm for checking class subsumptions in
EL++ knowledge bases has been given in [2], and it was shown that other standard infer-
ence problems can easily be reduced to that problem. We now present a new algorithm
for checking satisfiability ofEL++ rule bases, and show its correctness and tractability.
Clearly, subsumption checking can be reduced to this problem: given a new individual
a ∈ NI , the rule base RB∪ {C(a), {a}(x) ⊓ D(x) → ⊥(x)} is unsatisfiable iff RB entails
C ⊑ D. Instance checking in turn is directly reducible to subsumption checking in the
presence of nominals.

Algortihm 1. The algorithm proceeds by computing two sets: a setE of inferred “do-
main elements”, and a setS of relevant subclass inclusion axioms that are entailed by

12

RB. The elements ofE are represented by basic concept expressions ofRB, i.e.E ⊆ B,
and the inclusion axioms inS are of the form C⊑ D or C ⊑ ∃R.D, where C,D ∈ E.
Hence, bothE andS are polynomially bounded by the size ofRB.

Initially, we setE ≔ {{a} | {a} ∈ B} ∪ {⊤} andS ≔ ∅. Now a DL rule is applied
whenever we find that there is amatchwith the rule body. Given a rule B→ H, a match
θ is a mapping from all variables in B to elements ofE, such that the following hold:

– for every C(y) ∈ B, θ(y) ⊑ C ∈ S, and
– for every R(y, z) ∈ B, θ(y) ⊑ ∃R.θ(z) ∈ S.

An algorithm for partially computing matches is given below. The algorithm now pro-
ceeds by applying the following rules until no possible ruleapplication further modifies
the setE or S:

(EL1) If C ∈ E, thenS ≔ S ∪ {C ⊑ C,C ⊑ ⊤}.
(EL2) If there is a rule B→ E(x) ∈ RB, and if there is a matchθ for B with θ(x) = θx,

thenS ≔ S ∪ {θx ⊑ E}. In this case, if E= C or E = ∃R.C, thenE ≔ E ∪ {C}.
(EL3) If there is a rule B→ R(x, y) ∈ RB, and if there is a matchθ for B withθ(x) = θx

andθ(y) = θy, thenS ≔ S ∪ {θx ⊑ ∃R.θy}.
(EL4) If {C ⊑ {a},D ⊑ {a},D ⊑ E} ⊆ S thenS ≔ S ∪ {C ⊑ E}.

Here we assume that C,D,D′ ∈ B, E ∈ B ∪ {∃R.C | C ∈ B}, and R∈ NR. After termi-
nation, the algorithm returns “unsatisfiable” if⊥ ∈ E, and “satisfiable” otherwise.

Assuming that all steps of Algorithm 1 are computable in polynomial time, it is
easy to see that the algorithm also terminates in polynomialtime, since there are only
polynomially many possible elements forE andS, and each case adds new elements
to either set. However, we still have not verified that individual steps can be computed
efficiently, and in particular this is not obvious for the match-checks in (EL2) and (EL3).
Indeed, finding matches in query graphs is known to be NP-complete in general, and
the tree-like structure of queries is crucial to retain tractability. Moreover, even tree-
like rule bodies admit exponentially many matches. But notethat Algorithm 1 does not
considerall matchesbut only the (polynomially many) possible values ofθx (andθy).
We will now specify an algorithm that checks in polynomial time whether a matchθ as
in (EL2) and (EL3) exists. Naturally, this is closely related to the general task of testing
the existence of homomorphisms between trees and graphs.

Proposition 11. Consider a rule of the form B→ C(x) (B → R(x, y)), setsE andS
as in Algorithm 1, and an elementθx ∈ E (elementsθx, θy ∈ E). There is an algorithm
that decides whether there is a matchθ such thatθ(x) = θx (θ(x) = θx andθ(y) = θy),
running in polynomial time w.r.t. the size of the inputs.

Proof. We first specify a suitable algorithm, which works by propagating restrictions
along the paths of the bodyB. For every variablex in B, a setΘ(x) of possible values is
computed. Initially, we setB′ ≔ B, andΘ(x) ≔ E for all x. While B′ is non-empty, the
algorithm does the following:

– Select a variablez that is final inB′.

13

– If there is some atomD(z) ∈ B′, select some suchD(z). Then setΘ(z) ≔ Θ(z)∩{D′ |
D′ ⊑ D ∈ S} andB′ ≔ B′ \ {D(z)}.

– If there is some atomS(z′, z) ∈ B′, select some suchS(z′, z). Then setΘ(z′) ≔
Θ(z′) ∩ {D | D ⊑ ∃S.D′ ∈ S for someD′ ∈ Θ(z)} andB′ ≔ B′ \ {S(z′, z)}.

Finally, if θx < Θ(x) or Θ(z) = ∅ for some variablez in B, then the algorithm returns
false(i.e. no according match exists). Otherwise, ifH is of the formC(x), the algorithm
returnstrue.

Otherwise,H is of the formR(x, y). The algorithm setsΘ(x) ≔ {θx}. If B contains
some pathR0(x0, x1) . . .Rn(xn, xn+1) with xn+1 = y andx0 initial in B, then, fori = 1 to
n, do the following:

– SetΘ(xi) ≔ Θ(xi) ∩ {D | D′ ⊑ ∃Ri−1.D ∈ S for someD′ ∈ Θ(xi−1)}.

Finally, the algorithm returnstrue if θy ∈ Θ(y), and it returnsfalseotherwise.

Claim 1 The algorithm terminates after polynomially many steps.
In the first processing stage, every iteration removes some atom fromB′, and hence

there are only a linear number of steps. Note that the algorithm is guaranteed to ter-
minate, i.e. that every atom must be processed at some point,sinceB → H is a DL
rule. Selecting some final variablez is naively possible by checking, for all variablesz,
whether some atomS(z, z′) exists inB′ or not (note thatB′ contains only variables as
terms as it is normalised). One can obviously find an atomD(z) or S(z, z′) that is to be
reduced next in linear time. It remains to check that the computations forΘ(z) andΘ(z′)
can be done in polynomial time. This follows since the intersections of polynomially
large sets can be computed in polynomial time, where we note thatΘ(z) ⊆ E is bounded
by the size ofE, and that the intersected sets can be computed by a linear number of
comparisons with elements ofS.

For the caseH = R(x, y), one first needs to find a (unique) path from some initial
x0 to y. The lengthn+ 1 of this path is bounded by the size ofB, and one can construct
the path backwards starting fromy, where each next section can be found by a linear
number of comparisons with role atoms ofB. The n + 1 iterations ofi can again be
performed in polynomial time each, where three polynomially large sets are intersected
in each computation step.

Claim 2 If there is a matchθ with the required properties, then the algorithm returns
true.

Let θ be the required match withθ(x) = θx (andθ(y) = θy). We first show that,
throughout the first processing stage,θ(z) ⊆ Θ(z) for any variablez in B. Initially this is
clearly the case, asθ(z) ∈ E by definition. For the induction step, it suffices to note that
θ(z) ∈ {D′ | D′ ⊑ D ∈ S}wheneverD(z) ∈ B to obtain the result for reduction of concept
atoms. The case of role atoms is similar, and we thus concludethat θx = θ(x) ∈ Θ(x)
andΘ(z) , ∅ for all zafter the first processing stage.

In the caseH = R(x, y), we can continue the above inductive argument. Clearly,
settingΘ(x) ≔ θx = θ(x) preserves the claimed property. For the iteration, we can again
observe that, for any variablez, the value ofθ(z) is contained in the sets intersected
when computingΘ(z). Hence we obtainθy = θ(y) ∈ Θ(y) as required.

14

Claim 3 If the algorithm returnstrue, then there is a matchθ with the required proper-
ties.

After the completion of the first processing stage, we construct a matchθ as follows.
For each variablez that is initial inB, selectθ(z) to be any element ofΘ(z), which must
exists sinceΘ(z) , ∅ for all z. All other values ofθ are defined iteratively:

(a) Select some variablez such thatθ(z) is yet undefined, but there is some atom
S(z′, z) ∈ B such thatθ(z′) is defined.

(b) Selectθ(z) to be any element of the setΘ(z) ∩ {D | θ(z′) ⊑ ∃S.D ∈ S}.

We claim that this defines a matchθ for B. First note that each variablez in B will
indeed be considered in the iteration, based on property (R1) of DL rules, and that the
selected atomS(z′, z) is unique by (R2). Second, we claim that the intersection in(b) is
necessarily non-empty. Indeed, sinceS(z′, z) must have been considered in the iteration
on B′, we know that for anyD ∈ Θ(z′) there is someD ⊑ ∃S.D′ ∈ S with D′ ∈ Θ(z).
Note that the setΘ(z) is not changed at any point after the processing ofS(z′, z), and
hence we still find some elementθ(z) ∈ Θ(z) with the required property.

Finally, we show thatθ is a match. The according condition is clearly satisfied for
all concept atomsD(z), since they were explicitly checked for all elements inΘ(z) when
processing this atom. For the case of role atoms, the matching condition follows directly
from (b).

This settles the case forH = C(x). For H = R(x, y), note that the final computation
of Θ(y) is similar to the iterative construction ofθ above, where we consider only one
initial elementx0 (which exists due to (R1)), and where all possible choices for each
θ(z) are considered. So, ifθy ∈ Θ(y), then there is a way of constructingθ as above so
thatθ(y) = θy. This finishes the claim and the proof. �

We can now proceed to show correctness and tractability of Algorithm 1.

Lemma 12. Algorithm 1 terminates after polynomial time w.r.t. the size of the consid-
ered rule base.

Proof. As argued above, the algorithm can perform only a polynomialnumber of it-
erations due to the restricted size ofE andS. Steps (EL1) and (EL4) clearly can be
performed in polynomial time. For (EL2) and (EL3), Proposition 11 asserts that it can
be decided in polynomial time whether there is some matchθ such thatθ(x) = θx (and
θ(y) = θy). Since there are only polynomially many possible choices of θx (andθy), the
preconditions of (EL2) and (EL3) can thus be checked in polynomial time as required.

�

Lemma 13. For any normalisedEL++ rule baseRB, Algorithm 1 returns “unsatisfi-
able” only if RB is unsatisfiable.

Proof. We claim that, for any interpretationI with I |= RB, we have thatI |= S and
CI , ∅ for eachC ∈ E. We proceed by induction. The base case is obvious, since⊤

and all nominal classes must not be empty. For the induction step, we consider each
derivation rule separately.

For (EL1) the claim is immediate, since all generated statements are tautologies.

15

For (EL2) and (EL3), we first show the following auxiliary claim (∗). Given some
matchθ for a ruleB→ H, let Z be any variable assignment forI such thatZ(x) ∈ θ(x)I

for all x. Then we find thatBI,Z = true. Indeed, for any concept atomC(x) ∈ B, we
haveθ(x) ⊑ C ∈ S (sinceθ is a match) and thusI |= θ(x) ⊑ C by induction hypothesis.
But then alsoZ(x) ∈ θ(x)I ⊆ CI. The case of role atomsR(x, y) is similar.

Now consider a ruleB→ E(x), a matchθ, and concept expressionθx as in (EL2).
For anyδ ∈ θIx , there is some variable assignmentZ such thatZ(x) = δ andZ(z) ∈ θ(z)I

for all variablesz. This follows from the induction hypothesis thatCI , ∅ for each
C ∈ E, sinceθ(z) ∈ E. Using (∗) we conclude that for any suchZ, we haveBI,Z = true,
and therefore alsoE(x)I,Z = true sinceI |= B → E(x). Thus, for anyδ ∈ θIx , we
conclude thatδ ∈ EI, and thusI |= θx ⊑ E as claimed. Moreover, this ensures that
EI , ∅ and, if E = ∃R.C, alsoCI , ∅. This shows the claim of the induction forE and
S.

The case for (EL3) is similar to (EL2).
Finally consider case (EL4). It is easy to see that all basic concept expressions

occurring in axioms ofS are also contained inE. Hence,C andD in (EL4) are non-
empty inI, and thusCI = DI = {aI}. From this the induction claim onS is immediate.

In summary we have shown that, whenever⊥ ∈ E, we find that⊥I , ∅ for each
modelI of RB. Since this cannot be, this shows the claimed unsatisfiability of RB. �

Lemma 14. For any normalisedEL++ rule baseRB, Algorithm 1 returns “unsatisfi-
able” wheneverRB is unsatisfiable.

Proof. We show the contrapositive: if the algorithm does not return“unsatisfiable” then
there is some interpretationI that is a model of RB. The proof proceeds by constructing
this model.

The domain∆I of I is chosen to consist of the set of computed elementsE, fac-
torised to take inferred equalities into account. To this end, a binary relation∼ onE that
will serve us to represent inferred equalities is defined as follows:

C ∼ D iff C = D or {C ⊑ {a},D ⊑ {a}} ⊆ S for somea ∈ NI .

We show that∼ is an equivalence relation onE. Reflexivity and symmetry are obvious.
For transitivity, we first note that elements related by∼ are subject to the same assertions
in S. Indeed, rule (EL4) allows us to conclude that, for anyC,C′ ∈ E with C ∼ C′,
C ⊑ E ∈ S impliesC′ ⊑ E ∈ S (∗).

This also yields transitivity of∼, since{C1 ⊑ {a},C2 ⊑ {a}} ⊆ S andC2 ∼ C3

impliesC3 ⊑ {a} ∈ S and thusC1 ∼ C3. We use [C] to denote the equivalence class of
C ∈ E w.r.t.∼.

These observations allow us to make the following definitionof I:

– ∆I ≔ {[C] | C ∈ E},
– CI ≔ {[D] ∈ ∆I | D ⊑ C ∈ S} for all C ∈ NC,
– aI ≔ [{a}] for all {a} ∈ B, andaI ≔ [⊤] for all {a} < B,
– RI ≔ {〈[C], [D]〉 ∈ ∆I × ∆I | C ⊑ ∃R.D ∈ S} for all R ∈ NR.

Roles and concepts not involved inE orS are automatically interpreted as the empty set
by the above definition. The definitions ofCI andRI are well-defined due to (∗) above.

16

We can now observe the following desired correspondence betweenI andS: For any
C,D ∈ E, we find that [C] ∈ DI iff C ⊑ D ∈ S (†). We distinguish the following cases
based on the structure ofD:

– D = ⊥. Clearly [C] < ⊥I. To showC ⊑ ⊥ < S, note thatC′ ⊑ ⊥ < S for all C′ ∈ E.
Otherwise, the first axiom of the formC′ ⊑ ⊥ could only have been introduced in
(EL2), which contradicts our assumption that⊥ < E.

– D = ⊤. By (EL1)C ⊑ ⊤ ∈ S, and of course also [C] ∈ ⊤I.
– D ∈ NC. This case follows directly from the definition ofI.
– D = {a} for somea ∈ NI . If [C] ∈ {a}I then [C] = [{a}], and henceC ∼ {a}. Since
{a} ⊑ {a} ∈ S (EL1), we obtainC ⊑ {a} ∈ S from (∗).
Conversely, ifC ⊑ {a} ∈ S, thenC ∼ {a} and hence{[C]} = {[{a}]} = {a}I as
required.

Finally, it only remains to show thatI is indeed a model of RB. We argue that each
rule B → H of RB is satisfied byI. Thus consider some variable assignmentZ such
thatBI,Z = true. This means that for allC(x) ∈ B (R(x, y) ∈ B), we find thatZ(x) ∈ CI

(〈Z(x),Z(y)〉 ∈ RI). Now assume thatZ(x) = [D] (Z(y) = [D′]). Now for concept atoms
C(x), we concludeD ⊑ C ∈ S by (†). For role atomsR(x, y), we obtainD ⊑ ∃R.D′ ∈ S
as a direct consequence of the definition ofI. Since this reasoning applies to all atoms
in B, there must be a matchθ such thatZ(x) = [θ(x)] for all variablesx of B.

Now consider the rule headH. If H is of the formC(x), then by (EL2) we find that
θ(x) ⊑ C ∈ S. If C ∈ E we can conclude [θ(x)] ∈ CI by (†), and sinceZ(x) = [θ(x)],
we find thatI |= B → H. Otherwise, ifC = ∃R.D (thus θ(x) ⊑ ∃R.D ∈ S), we
find that D ∈ E, again by (EL2). Hence, according to the definition ofI, we have
〈[θ(x)], [D]〉 ∈ RI, and also [D] ∈ DI where we use (†) again. This shows [θ(x)] ∈ CI

as above, and henceI |= B→ H as required.
The case of rule heads of the formR(x, y) is treated similarly, using (EL3). �

Combining the above results, we obtain the main result of this section:

Theorem 15. Satisfiability checking, instance retrieval, and computing class subsump-
tions forEL++ rule bases is possible in polynomial time in the size of the rule base.

6 DLP 2

Description Logic Programs(DLP) have been proposed as a tractable knowledge rep-
resentation formalism for bridging the gap between DL and (Horn) logic programming
[7]. This clearly suggests further extension with DL rules,and we will see below that
reasoning with this extension is still possible in polynomial time. Moreover, various
further features ofSROIQ can easily be included as well, and thus we arrive at a DL
rule language that might be dubbed DLP 2 in analogy to the ongoing standardisation of
the extended OWL 2 based onSROIQ.

DLP has been defined in various ways, and a detailed syntacticcharacterisation
is found in [13]. Essentially, however, DLP can be characterised as the fragment of
SHOIQ that can entail neither disjunctive information nor the existence of anonymous

17

individuals. The former condition has been extensively studied in the context of Horn
description logics [14], and rather complex syntactic definitions can be given to char-
acterise all admissible axioms of such logics. Here, we adopt a much simpler definition
that focusses on the essential expressive features withoutencompassing all alternative
syntactic forms of DLP axioms:

Definition 16. Roles of DLP are defined as inSROIQ, including inverse roles. ADLP
body conceptis anySROIQ concept expression that includes only concept names,
nominals,⊓, ∃, ⊤, and⊥. A DLP head conceptis anySROIQ concept expression that
includes only concept names, nominals,⊓, ∀,⊤,⊥, and expressions of the form≤1R.C
where C is a DLP body concept.

A DLP knowledge baseis a set of Rbox axioms of the form R⊑ S and R◦ R ⊑ R,
Tbox axioms of the form C⊑ D, and Abox axioms of the form D(a) and R(a, b), where
C ∈ C is a body concept, D∈ C is a head concept, and a, b ∈ NI are individual names.
A DLP rule baseis a set of DL rules such that all concepts in rule bodies are body
concepts, and all concepts in rule heads are head concepts.

A DLP 2knowledge base consists of a DLP knowledge base that additionally might
contain Rbox axioms of the formDis(R,S) and Asy(R), together with some DLP rule
base.

Note that neither regularity nor simplicity restrictions apply in DLP. It is immediate
that DLP Rbox and Tbox axioms can directly be expressed by DLPrules. The same
holds for Abox axioms: though we cannot use the common translation ofR(a, b) into
{a}(x) → ∃R.{b}(x), the DLP rule{a}(x) ∧ {b}(y) → R(x, y) serves the same purpose.
Hence we can restrict our further considerations to DLP 2 knowledge bases into which
all knowledge base axioms other thanDis(R,S) andAsy(R) have been internalised. The
core observation of this section is as follows:

Proposition 17. Any DLP 2 knowledge baseKB can be transformed into an equisatis-
fiable set of function-free first-order Horn rules with at most five variables per formula,
and this transformation is possible in polynomial time w.r.t. the size ofKB.

Proof. We use RB to denote the DLP rule base of KB. The transformationproceeds in
multiple stages, that we will present and verify independently.

First of all, we expand DL concept atoms as done in Proposition 10. Individual
names in argument positions are not a problem now – they can just be kept throughout
the translation. The transformation algorithm iteratively transforms RB until further
iterations do no longer modify RB. In each iteration, the following steps are applied to
each ruleB→ H in RB:

– if H is of the form∀R.C(x) such thatC is no concept name, then the ruleB→ H is
replaced by two new rulesB→ ∀R.A(x) andA(x)→ C(x) whereA ∈ NC is new,

– if H is of the form≤1R.C(x) such thatC is no concept name, then the ruleB→ H
is replaced by two new rulesB → ≤1R.A(x) andC(x) → A(x) whereA ∈ NC is
new,

– if H is of the form (C ⊓ D)(x), then the ruleB→ H is replaced by two new rules
B→ C(x) andB→ D(x),

18

– if B contains an atom of the form∃R.C(x), it is replaced by two new atomsR(x, y)
andC(y) wherey ∈ V is new,

– if B contains an atom of the form (C⊓ D)(x), it is replaced by two new atomsC(x)
andD(x).

Again it is easy to see that this transformation preserves satisfiability of RB in each
transformation step. The number of applicable steps is bounded by the size of RB:
expansion of rule heads may generate new rules for each conjunction operator occurring
in rule heads, but their number is linearly bounded, and expansion of body atoms may
only incur a linear increase in size for each rule body.

We thus arrive at an equisatisfiable rule base RB all of whose concept atoms are
concept names and nominals, with the only exception of rule heads of the form∀R.A
and≤1R.A with A ∈ NC.

We proceed by reducing the structure of rule bodies. Given some rule bodyB and
term t, we defineBt ≔ {C(t) | C(t) ∈ B} for some termt. In each iteration step of the
reduction, select some ruleB→ H in RB that contains more than three variables, and
do one of the following:

(1) If there is someR(t, u) ∈ B such thatu is final andu does not occur inH, then the
rule B→ H is replaced by two new rules (B \ (Bu ∪ {R(t, u)})) ∪ {C(t)} → H and
Bu ∪ {R(t, u)} → C(t), whereC ∈ NC is a new concept name.

(2) If there is someC(t) ∈ B such thatt occurs neither inH nor in any role atom of
B, then the ruleB → H is replaced by two new rules (B \ Bt) ∪ {D(u)} → H and
Bt → D(u), whereu , t is some arbitrary term inH, andD ∈ NC is a new concept
name.

(3) If H = R(t, u) and there are role atomsS(v, v′),S′(v′, u) ∈ B but no further role
atom of the formS′′(v′, v′′) ∈ B, thenB → H is replaced by two new rules (B \
(Bv′ ∪ {S(v, v′),S′(v′, u)})) ∪ T(v, u) → H andBv′ ∪ {S(v, v′),S′(v′, u)} → T(v, u),
whereT ∈ NR is a new role name.

This iteration is repeated until no further changes occur. It is easy to see that the process
terminates after polynomially many steps: every step removes atoms from an existing
rule body, and none of the generated rules has more than threevariables.

Claim 1 After the above translation, all rules in RB have at most three variables in the
body.

For a contradiction, suppose that there is some ruleB→ H with at least four vari-
ables inB. By assumption, none of the three cases of the translation isapplicable. Due
to case (1), for any role atomR(t, u) ∈ B whereu is final, u must occur inH (sinceH
contains at most one non-initial element by (R3)) and is unique (∗). Thus, by case (2),
all variables inB must also occur in role atoms or inH.

Now assumeH is a concept atom. ThenH cannot contain any finalu that occurs in
a role atomR(t, u) ∈ B (∗), and henceB contains no role atoms. But thenB contains
at most one variable, which would contradict our assumption. Thus assume thatH is a
role atom. Based on our conclusion (∗) thatB contains at most one final term that is part
of some role atom, we conclude that the role atoms ofB must form a chain. But then,
assuming thatB contains at least four variables, there must be atomsS(v, v′),S′(v′, u) ∈

19

B as required by (3). Since (3) was assumed to not be applicable, there must be some
atomS′′(v′, v′′) as in the condition of (3). Sincev′′ , u cannot be final, and sinceu is
the only final element in role atoms ofB, there must be some path fromv′′ to u. But this
contradicts (R2) and hence refutes the initial assumption on the number of variables in
B.

Claim 2 The above translation preserves satisfiability of RB.
This can be shown by a simple induction, given that all possible transformation

steps preserve satisfiability. Thus consider step (1), where B→ H is the processed rule,
andB1 → H andB2 → C(t) denote the generated rules. Clearly, addingB2 → C(t) to
RB preserves satisfiability sinceC is new. Thus it remains to show equisatisfiability of
RB1 ≔ RB∪ {B2→ C(t)} and RB2 ≔ RB∪ {B2→ C(t), B1→ H} \ {B→ H}.

Thus consider some interpretationI such thatI |= RB1. Then there is some in-
terpretationI′ with I′ |= RB1 andCI

′

= {δ ∈ ∆I
′

| BI
′,Z

2 = true for some variable
assignmentZ with tI

′ ,Z = δ}. A suitableI′ can be obtained fromI by minimising the
extent ofC while preserving all other aspects of the interpretation, which can be done
sinceC is new. Note thatI′ |= B2→ C(t) by definition. We claim thatI′ |= RB2. Thus
assume thatBI

′,Z
1 = true for some variable assignmentZ. ThenC(t)I

′,Z = trueand thus
tI
′ ,Z ∈ CI

′

. By the assumptions onCI
′

, we find that there is some variable assignment
Z′ such thatBI

′,Z′

2 = truewheretI
′ ,Z = tI

′ ,Z′ . Now observe that, by construction,B2 and
B1 contain no common variables, other than possiblyt (if t is a variable). Thus there
is some variable assignmentZ′′ such thatZ′′(x) = Z(x) for any variablex in B1 and
Z′′(x) = Z′(x) for any variablex in B2. But then (B1 ∪ B2)I

′,Z′′ = true. As defined in
(1), (B1 ∪ B2) = B and thusBI

′,Z′′ = true, and we can concludeHI
′,Z′′ = true since

I′ |= B → H. By definition,Z andZ′′ agree on all terms inH and thus we obtain
HI

′,Z = trueas required. SinceZ was arbitrary, this shows thatI |= B1→ H, and hence
I′ |= RB2.

For the other direction, consider some interpretationI such thatI |= RB2. We
claim thatI |= RB1. Thus assume thatBI,Z = true for some variable assignmentZ.
Then alsoBI,Z2 = true asB2 ⊆ B, and henceC(t)I,Z = true. But thenBI,Z1 = true and
thusHI,Z = trueas required.

The cases (2) and (3) can be treated in a similar fashion, where again it is essential
that each case completely eliminates some term from the transformed rule, so that the
required merging of variable assignmentsZ′ andZ′′ is indeed possible.

Finally, we can rewrite the transformed rules and axioms into equivalent first-order
formulae. After the above transformations, RB contains only rules with at most three
variables in the body, and with heads of one of the following forms:R(t, u), A(t), {a}(t),
∀R.A(t) and≤1R.A(t) (with A ∈ NC). Concept atoms in rule bodies contain only concept
names and nominals. Now consider a new binary predicate≈ and letP be the logic
program consisting of the following rules (as before, we omit universal quantifiers from
first-order rules):

→ x ≈ x C(x) ∧ x ≈ y → C(y)
x ≈ y → y ≈ x R(x, z) ∧ x ≈ y → R(y, z)
x ≈ y∧ y ≈ z → x ≈ z R(z, x) ∧ x ≈ y → R(z, y)
R(x, y) → R−(y, x) R−(x, y) → R(y, x)

20

instantiated for every concept nameC and role nameR occuring in KB. ClearlyP
is still polynomial in size. We now extendP with translated rules from RB. Thus, for
any ruleB→ H ∈ RB, do the following:

– replace every concept atom of the form{a}(t) in B→ H with a ≈ t,
– if H = ∀R.A(t), replaceH by A(x) and addR(t, x) to B, wherex is a new variable,
– if H = ≤1R.A(t), replaceH by x ≈ y and add{R(t, x),R(t, y),A(x),A(y)} to B, where

x andy are new variables,
– addB→ H to P.

It is easy to see that the above translations preserve the semantics of each rule, and
that each resulting rule contains at most five variables. Finally, we translate all Rbox
axioms of KB to rules as follows:

– Dis(R,S) is translated toR(x, y) ∧ S(x, y)→.
– Asy(R) is translated toR(x, y) ∧R(y, x)→.

This finishes the proof. �

This establishes the tractability of DLP 2:

Theorem 18. Satisfiability checking, instance retrieval, and computing class subsump-
tions for DLP 2 knowledge bases is possible in polynomial time in the size of the knowl-
edge base.

Proof. First note that instance retrieval and class subsumption can be reduced to satis-
fiability checking just as in the case ofEL++. Now to check satisfiability of a DLP 2
knowledge base, it is first transformed into an equisatisfiable set of function-free first-
order Horn rules as in Proposition 17. The satisfiability of such a set of formulae can be
checked in polynomial time, since any Horn logic program is semantically equivalent
to itsgrounding(the set of all possible ground instances of the given rules based on the
occuring individual names). For a program with a bounded numbern of variables per
rule, this grounding is bounded byr × in, wherei is the number of individual names and
r is the number of rules in the program. Finally, the evaluation of ground Horn logic
programs is known to beP-complete. �

7 CONCLUSION

We have introducedDL rules as a rule-based formalism for augmenting description
logic knowledge bases. For all DLs considered in this paper –SROIQ, EL++, and
DLP – the extension with DL rules does not increase the worst-case complexity. In
particular,EL++ rules and the extended DLP 2 allow for polynomial time reasoning
for common inference tasks, even though DL rules do indeed provide added expressive
features in those cases.

The main contributions of this paper therefore are twofold.Firstly, we have extended
the expressivity of two tractable DLs while preserving their favourable computational
properties. The resulting formalisms ofEL++ rules and DLP 2 are arguably close to

21

being maximal tractable fragments ofSROIQ. In particular, note that the union of
EL++ and DLP is no longer tractable, even when disallowing numberrestrictions and
inverse roles: this follows from the fact that this DL contains the DL Horn-FLE which
was shown to be ET-complete in [14].

Secondly, while DL rules do not truly add expressive power toSROIQ, our charac-
terisation and reduction methods for DL rules provides a basis for developing ontology
modelling tools. Indeed, even without any further extension, the upcoming OWL 2 stan-
dard would support all DL rules. Hence OWL-conformant toolscan choose to provide
rule-based user interfaces (as done for Protégé in [8]), andrule-based tools may of-
fer some amount of OWL support. We remark that in the case of DLP andEL++, the
conditions imposed on DL rules can be checked individually for each rule without con-
sidering the knowledge base as a whole. Moreover, in order tosimplify rule editing,
the general syntax of DL rules can be further restricted without sacrificing expressivity,
e.g. by considering only chains rather than trees for rule bodies. We thus argue that DL
rules can be a useful interface paradigm for many application fields.

Our treatment of rules inEL++ and DLP 2 – used only for establishing complexity
bounds in this paper – can be the basis for novel rule-based reasoning algorithms for
those DLs, and we leave it for future research to explore thisapproach.

AcknowledgementsResearch reported in this paper was supported by the EU in theIST
projects ACTIVE (IST-2007-215040) and NeOn (IST-2006-027595) as well as by the
German Research Foundation under the ReaSem project.

References

1. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. 10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR2006), AAAI Press
(2006) 57–67

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope.In: Proc. 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), Edinburgh, UK, Morgan-Kaufmann Publishers (2005)

3. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Computing Surveys33 (2001) 374–425

4. Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. In Feldman, S.I.,
Uretsky, M., Najork, M., Wills, C.E., eds.: Proc. 13th Int. Conf. on World Wide Web (WWW
2004), ACM (2004) 723–731

5. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. J. Web Sem.
3(1) (2005) 41–60

6. Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in CARIN. Artifi-
cial Intelligence104(1998) 165–209

7. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining
logic programs with description logic. In: Proc. 12th Int. Conf. on World Wide Web (WWW
2003), ACM (2003) 48–57

8. Gasse, F., Sattler, U., Haarslev, V.: Rewriting rules into SROIQ axioms. Poster at 21st Int.
Workshop on DLs (DL-08) (2008)

9. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press (2007)

22

10. Rudolph, S., Krötzsch, M., Hitzler, P.: All elephants are bigger than all mice. In: Proc. 21st
Int. Workshop on Description Logics (DL-08). (2008)

11. Calvanese, D., Giacomo, G.D., Lenzerini, M.: On the decidability of query containment un-
der constraints. In: Proc. 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’98), ACM Press (1998) 149–158

12. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable rules for OWL 2. Technical report,
Universität Karlsruhe, Germany (2008)http://korrekt.org/page/ELP.

13. Volz, R.: Web Ontology Reasoning with Logic Databases. PhD thesis, Universität Karlsruhe
(TH), Germany (2004)

14. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexity boundaries for Horn description logics.
In: Proc. 22nd AAAI Conf. (AAAI’07). (2007)

23

