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Abstract. We introducelescription logic (DL) rulesis a new rule-based formal-
ism for knowledge representation in DLs. As a fragment of Sleenantic Web
Rule Language SWRL, DL rules allow for a tight integrationtwbDL knowledge
bases. In contrast to SWRL, however, the combination of Désrwith expres-
sive description logics remains decidable, and we showttieddL SROZQ — the
basis for the ongoing standardisation of OWL 2 — can comiylétéernalise DL
rules. On the other hand, DL rules capture many expressatares 0fSROZQ
that are not available in simpler DLs yet. While reasoningfR0O7Q is highly
intractable, it turns out that DL rules can be introducedaidous lightweight DLs
without increasing their worst-case complexity. In partée, DL rules enable us
to significantly extend the tractable DESL** and DLP.

1 INTRODUCTION

The development of description logics (DLs) has been drivgrthe desire to push
the expressivity bounds of these knowledge representitioralisms while still main-
taining decidability and implementability. This has leadvery expressive DLs such
asSHOIN, the logic underlying the Web Ontology Language OWL [RHOIQ,
and more recenthSROIQ [1] which is the basis for the ongoing standardisation of
OWL 2! as the next version of the Web Ontology Language. On the tidied, more
light-weight DLs for which most common reasoning probleras be implemented in
(sub)polynomial time have also been sought, leading, ®ghe tractable DLEL**

[2].

Another popular paradigm of knowledge representation @eelvased formalisms
—ranging from logic programming to deductive databasexil&i to DLs, the expres-
sivity and complexity of rule languages has been studiednsitely [3], and many
decidable and tractable formalisms are known. Yet, rediogdDLs and rule languages
is far from easy, and many works have investigated this prabl

In this paper, we introducBL rulesas an expressive new rule language for com-
bining DLs with first-order rules in a rather natural way thamits tight integration
with existing DL systems. Since DLs can be considered asrfeangs of function-free
first-order logic with equality, an obvious approach is tontxine them with first-order
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Horn-logic rules. This is the basis of tis&=mantic Web Rule Language SWH&]..pro-
posed as a rule extension to OWL. However, reasoning becanaecidable for the
combination of OWL and SWRL, and thus more restricted rutgleages have been in-
vestigated. A prominent example dbé&-safe ruleq5], which restrict the applicability
of rules to a finite set of named individuals to retain deciligbSimilar safety condi-
tions have already been proposed for CARIN [6] in the contéxhe DL ALCNR,
where also acyclicity of rules and Thoxes was studied as tennative for retaining
decidability. Another basic approach is to identify the htdwgic rules directly express-
ible in OWL DL (i.e. SHOIN), and this fragment has been callédscription Logic
Programs DLP[7].

DL rules in turn can be characterised as a decidable fragofi&WRL, which cor-
responds to a large class of SWRL rules indirectly expréss&bSROIQ. They are
based on the observation that DLs can express only treénlidalependencies of vari-
ables. The concept expressiamorksAt.University rm 3 supervises.PhDStudent that
describes all people working at a university and supergisiome PhD student, e.g.,
corresponds to the following first-order formula:

Jy.AzworksAt(X, y) A University(y) A supervises(X, 2) A PhDStudent(2)

Here variables form the nodes of a tree with rgpwhere edges are given by binary
predicates. Intuitively, DL rules are exactly those SWRIlesy where premises (rule

bodies) consist of one or more of such tree-shaped strigctOme could, for example,

formulate the following rule:

worksAt(X, ¥) A University(y) A supervises(X, Z) A PhDStudent(z) — profOf(x, 2)

Since SWRL allows the use of DL concept expressions in rulespbtainSROIQ
rules,EL" rules, or DLP rules as extensions of the respective DLs. f@rcase of
SROIQ, DL rules have independently been proposed in [8], wherehfto editing
such rules was presented. As shown below, DL rules are ifdgathctic sugar” in this
case, even though rule-based presentations are ofteficaguly simpler due to the fact
that many rules require the introduction of auxiliary voaiaoy for being encoded in
SROIQ. On the other hand, we also consider the light-weight BYZ™ and DLP for
which DL rules truly extend expressivity, and we show thatplolynomial complexity
of these DLs is preserved by this extension.

After providing some preliminary definitions in Section 2ewtroduce DL rules
in Section 3. Section 4 shows how DL rules can be internaliseS8ROZQ, while
Section 5 employs a novel reasoning algorithm to pro€as rules directly. Finally,
Section 6 introduces DLP 2 and establishes the tractahififgasoning in this DL-
based rule language.

2 PRELIMINARIES

In this section, we recall the definition of the expressiveadiption logicSROIQ [1].
We assume that the reader is familiar with description l® (.



As usual, the DLs considered in this paper are based on tlsind sets ofindi-
vidual names\;, concept namellc, androle names\g containing thauniversal role
U € Ng.

Definition 1. A SROZQ Rbox forNg is based on a seR of rolesdefined asR :=
NrU{R™ | R e Ng}, where we sdhv(R) := R~ andInv(R") := R to simplify notation. In
the sequel, we will use the symbolsSR possibly with subscripts, to denote roles.

A generalisedole inclusion axion{RIA) is a statement of the form 8. . .0 S, C R,
and a set of such RIAs is a generaligetk hierarchyA role hierarchy igegularif there
is a strict partial order< onR such that

— S<R if Inv(S)<R,and
— every RIA is of one of the forms:

RoORCR, R CR Sj0...05,C R Ro0Sj0...05,C R Sjo...05,0RCR
such that Re Ng is a (non-inverse) role name, and S Rfori=1,...,n.
The set ofsimpleroles for some role hierarchy is defined inductively as foo

— If arole R occurs only on the right-hand-side of RIAs of thenf& C R such that
S is simple, then R is also simple.
— The inverse of a simple role is simple.

Arole assertiotis a statement of the forRef(R) (reflexivity), Asy(S) (asymmetry,
or Dis(S, §’) (role disjointnesg where S and Sare simple. ASROZQ Rbox s the
union of a set of role assertions together and a role hiergroh SRO7Q Rbox is
regular if its role hierarchy is regular.

Definition 2. Given aSROZQ RboxR, the set ofconcept expressiors is defined as
follows:

—NccCC,TeC,LeC,

—ifC,D e C,Re R, S e Rasimplerole, & N;, and n a non-negative integer, then
-C,CnD,CuD,{a}, YRC,dRC,dS.Self, <n S.C, and>n S.C are also concept
expressions.

Throughout this paper, the symbols C, D will be used to deomteept expressions. A
SROIQ Thoxis a set ofgeneral concept inclusion axiorGCls) of the form GZ D.
Anindividual assertioran have any of the following forms{(8&), R(a, b), =R(a, b),
a # b, with a b € N, individual names, G C a concept expression, andRe R roles
with S simple. ASROZQ Abox s a set of individual assertions.
A SROIQ knowledge base Kis the union of a regular RboR, and an Abox#A
and Thox7™ for R.

We further recall the semantics 8RO7Q knowledge bases.

Definition 3. An interpretations consists of a set’ calleddomain(the elements of it
being calledindividualg together with a functio’ mapping



Name Syntax|Semantics
inverse role R (X, y) € 4T x 47 | {y,x) € RY}

universal role |U AF x A7
top T a7
bottom 1 0
negation -C |47\ Cf
conjunction cnbD |cfnD?
disjunction CubD |CfuDf
nominals {a) {al}

univ. restriction [VRC |{x € 47 | (x,y) € R’ impliesy € C’}
exist. restriction|IR.C |{x € 47 | for somey € 47 , (x,y) € Rl andy € C’}
Self concept  |3S.Self|{x € 47 | (x, X) € S}

qualified numbgn S.C |{x € 47 | #y € 47 | (x,y) € ST andy € C'} < n}
restriction >NSCl{xed? |#yea’ | (xy)e S andye C'} > n}

Fig. 1. Semantics of concept constructorsIR0Q for an interpretatiod” with domain4?.

— individual names to elements 4f,
— concept names to subsets4dt and
— role names to subsets df x 47.

The function” is inductively extended to role and concept expression8@sIsin
Table 1. An interpretatiod” satisfiesan axiomy if we find thatZ = ¢:

- T ESCRIifS' cR,

—TESi0...0S,CRIifS[ o...0S] £ R (o being overloaded to denote the
standard composition of binary relations here),

— I E Ref(R) if R is a reflexive relation,

— T E Asy(R) if R? is antisymmetric and irreflexive,

— T EDIis(R S)if Rf and S are disjoint,

- JEccDifcf cDl.

An interpretation satisfiesa knowledge baskB (we then also say thaf is a
modelof KB and write I E KB) if it satisfies all axioms okB. A knowledge baskB
is satisfiabléf it has a model. Two knowledge bases aciivalentf they have exactly
the same models, and they aguisatisfiabléf either both are unsatisfiable or both are
satisfiable.

Further details o8ROIQ can be found in [1]. We have omitted here several syntac-
tic constructs that can be expressed indirectly, espg&lbx assertions for transitivity,
reflexivity of simple roles, and symmetry.

3 DESCRIPTION LOGIC RULES

In this section, we formally introducBL rules as a syntactic fragment of first-order
logic.



Definition 4. Consider some description logi€ with concept expressiors, individ-
ual names\, rolesR (possibly including inverse roles), and Mtbe a countable set of
first-order variables. Given termsu € N, UV, aconcept atom (role atoni§ a formula
of the form Gt) (R(t, u)) with Ce C (Re R).

To simplify notation, we will often use finite sets S of (rale aoncept) atoms for
representing the conjunctiofy S. Given such a set S of atoms and termstN, UV,
apathfrom tto u in S is a non-empty sequencéxXg Xz), . . ., Ra(Xn, Xn+1) € S where
xi=t,xxeVfor2<i<n, Xsi=uandx# X, forl<i<n. AtermtinS isnitial
(resp.final) if there is no path to t (resp. no path starting at t).

Given sets B and H of atoms, and as&t V of all variables in BJH, adescription
logic rule (DL rule)is a formulavx. A B — A H such that

R1 for any ue N; U V that is not initial in B, there is a path from exactly one ialti
teNUVtouin B,

R2 foranytue N, UV, there is at most one path in B from t to u,

R3 if H contains an atom of the form(t{} or R(t, u), then t is initial in B.

HereVx for x = {Xy,..., X,} abbreviates an arbitrary sequente. ... ¥X,. Since we
consider only conjunctions with all variables quantifiece will often simply write
B — H instead ofYx. A B— A H.

Arule base RBor some DLZ is a set of DL rules forZ.

The semantics of DL rules in the context of a descriptionddgiowledge base
is given by interpreting both the rules and knowledge basgrstsorder theories in
the usual way, and applying the standard semantics of @ediogic. This has been
discussed in the context of SWRL in [4], and we will not repbatdetails here.

Note that Definition 4 ensures that role atoms in rule bodesemrtially form a
(set of) directed trees, starting at initial elements. 8ialt but the first and last ele-
ments of a path must be variables, individuaieetively break paths apart. For ex-
ample, the following might be the body of a DL ruleafandb are individual names:
{R(x,d),S(a,2),S(a,Z2), T(zb), T'(Z, b)}. Using the well-known equivalence of for-
mulae{p — 01 A gz} and{p — 01, p — 02}, one can transform any rule into an
equivalent set of rules without conjunctions in rule he&liace this can be done in
linear time, we will assume without loss of generality thHaDd_ rules are of this form.

Moreover, since all DLs considered in this work support nuets, we will assume
without loss of generality that all terms in rules are valéabIndeed, any ator@(a)
with a € N; can be replaced b@€(x) A {a}(X) for some new variable € V. In the
presence of inverse roles, role atoms with individual nansesbe replaced by con-
cept atoms as followd(x, a) becomesiR.{a}(X), R(a, y) becomed Inv(R).{a}(y), and
R(a, b) becomesiR.{b}(X) A {a}(X). A similar transformation is possible for rule heads,
where generated concept atofag x) are again addetb the rule body

Before proceeding with the formal treatment of DL rules imeeete description
logics, let us consider some relevant special applicatdid_ rules.

Concept productfkules of the fornC(x) AD(y) — R(x, y) can encodeoncept products
(sometimes writtel© x D C R) asserting that all elements of two classes must be related
[10]. Examples include statements suclEBphant(X) AMouse(y) — biggerThan(x, y)

or Alkaline(x) A Acid(y) — neutralises(X, Y).



Local reflexivity, universal roleRules of the form€&€(x) — R(x, X) andR(x, X) — C(X)
can replace th&ROZQ Thox expressiol® C IR Self anddR.Self C C. The universal
role U of SROZQ can be defined as(x) A T(y) — U(x,y). Hence, a DL that permits
such rules does not need to explicitly introduce those cootst

Qualified RIAs DL rules of course can express arbitrary role inclusion @dpbut
they also can state that a RIA applies only to instances dhiceclasses. Examples
includeWoman(x) A hasChild(x,y) — motherOf(x, y) andtrusts(X,y) A Doctor(y) A
recommends(Y, 2) A Medicine(2) — buys(X, 2).

4 DL RULESIN SROIQ

In this section, we show how knowledge bases of such rulebearompletely inter-
nalised into the DLSROZQ. First, however, we adopt the notions refjularity and
simplicityto DL rule bases ilSROI Q.

Definition 5. Consider a rule bas&B and a knowledge bas3€B for SROIQ. The set
of simple roleof KB URB is the smallest set of roles containing every role R for which
the following conditions hold:

— If R or Inv(R) occur on the right-hand-side of some RIAK®, then this RIA is of
the form SC R or SC Inv(R), and S is simple.

— If R or Inv(R) occur in some rule head of the form>Ry) or Inv(R)(x,y) in RB,
then the according rule body is of the forn{>xSy) with S simple, or of the form
C(x) where x=y.

Note that this is indeed a proper inductive definition, wheres that do not occur
on the right of either RIAs or rules form the base case. Theneldd knowledge base
KBURB s admissibldor SROZQ if all roles S;y occurring in concept (sub)expressions
of the form<n S.C, >n S.C, 3S.Self, and Dis(S;, S;), and in role atoms of the form
S(x, X) (x € V) are simple.

An extended knowledge basB U RB is regularif there is a strict partial order<
onR such that

- S<R if Inv(S)<R,
— the role box oKB is regular w.r.t.<, and
— for any rule B— R(x,y), each §z V) € B satisfies one of the following:
e S<R,or
e thereis no path fromvtoy, or
e S =R, there is no other &, V') € B with a path from ¥to y, and we find that:
either x=z and there is no (X) € B, or y= v and there is no ¢)) € B.

Note that RIAs in regulaBROZ Q knowledge bases are allowed to have two special
forms for transitivity and symmetry, which we do omit for tbefinition of regularity
in DL rules to simplify notation. Sinc& in S(x, X) is simple, we can replace such role
atoms by concept atont¥(x) whereC is a new concept name for which a new axiom



C = 3S.Self is added. We will thus assume that no role atoms of this forouon
admissible knowledge bases.

In the remainder of this section, we show that checking tlisfegility of extended
SROIQ knowledge bases that are admissible and regular is deeidabdl has the
same worst-case complexity as reasonin§ROZ Q. This is achieved by a polynomial
transformation of rule bases int8ROZQ axioms. The first step of doing this is to
replace “dead branches” of the tree-shaped query body bydbtepts. The proof is a
variation of the “rolling-up” technique used for conjun&iquery answering [11].

Lemma 6. Any DL rule B— H for SROZQ can be transformed into a semantically
equivalent rule B — H such that all paths in Bare contained in a single maximal
path. If H = R(x,y), then y is the final element of that maximal path, and i&HC(X)
then there are no paths in B. A rule with these properties ieddinearised

Proof. We provide an iterative reduction algorithm for transfangB into B'. Initially,
we setB’ := B. Every iteration of the algorithm proceeds in two steps:

S1 For each variablg € V in B, letS = {Cy(X),...,Cn(X)} be the set of all concept
atoms inB’ that refer tox, and seB’ := (B’ \ S) U {(C1 ... M C)(X)}.

S2 LetR(x,y) € B’ be any atom wherg is a final term inB such thatH is not of the
form S(z y) for a variablez. If no such atom exists, the algorithm terminates and
returnsB’. Otherwise, leD denote the (unique by S1) concept such @) € B,
and letD denotert if no concept with variablg exists. NowB’ is changed by setting
B = (B"\ {R(x.y). D(Y)}) U {(FRD)(X)}

Clearly, this algorithm terminates after a linear numbadterhtions, since it reduces the
number of role atoms iB’ in every non-final iteration. Moreovel’ after termination
cannot contain final terms that are part of some path, untessdccur as the second
argument of the rule head. Thus all paths, if any, end in the flement, and iH =
C(x) then all paths have been reduced.

This shows that the result has the required form. It remainetify thatB” — H
is semantically equivalent tB — H. By construction, the final variablechosen for
elimination is a variable that occurs in at most one conceghéut not inH (since
it is neither the second term id nor initial in B). Now it is easy to see that the com-
puted rules before and after one iteration are semantieglijvalent. By induction, the
algorithm thus returns a rule that is semantically equivitie its input. O

As an example, the DL rule that was given in the introductian be simplified to
yield:

JworksAt.University(X) A supervises(x,2) A PhDStudent(2)—profOf(x,2)

The proof of Lemma 6 also shows that, in the presence of ievelss, condition (R1)
of Definition 4 can be relaxed as follows:

R1" for anyu € N; UV that is not initial inB, there is a path from ongr moreinitial
elementd e Ny UV touin B.



Indeed, using inverse roles, one can eliminate thoselislganents that are not required
by (R3) just like the final elements in the above proof.

The above transformation allows us to reduce tree-shagded ta rules of only
linear structure that are much more similar to RIASIROZ Q. But while all role atoms
now belong to a single maximal path, rules might still comtdisconnected concept
atoms. The rul&(x, y) AS(u, V)AC(2) — T(x, V), e.g., is rewritten taIR. T(X) AS(u, V) A
C(2) = T(x,V).

We now show that DL rules i8ROJQ can indeed be internalised.

Theorem 7. Consider a rule bas&B and a knowledge bas€B for SRO7Q, such
that RB U KB is admissible. There is 8R07Q knowledge bas&Bgg that can be
computed in time polynomial in the sizeRB, such thakB U RB andKB U KBgg are
equisatisfiable.

Moreover, ifKB U RB is regular, therKB U KBRgg is also regular.

Proof. We can assume that all rules in RB are in the form defined in LaGnindeed,
the transformation used in this lemma preserves simpliditples in KBU RB, since
it only affects rules entailing non-simple roles. Moreover, sincdrduesformation may
only remove role atoms from rule bodies, it also preservgslegity of KB U RB.

We can assume without loss of generality that RB containsieavith the universal
roleU in its head — clearly such rules are tautological (yet, theuld formally violate
the requirement of regularity given the below transfororad).

Rules can easily be transformed into an equivalent rule thattall variables occur-
ring in rule heads do also occur in the according rule bodigsimply adding atoms
T(X) to the body if required. Moreover, for any ruBe— R(X,y), Lemma 6 asserts that
B contains at most one maximal path with final elemgrdand all role atoms oB (if
any) are part of that path. Letbe the initial element of the maximal path if it exists,
and letz bey otherwise. Now ifX # z, thenx occurs inB only in concept atom€(x),
and we can add a role atob(x, Z) to B without violating (R1)—(R3). Moreover, this
change preserves the semantics of the rule gineez) is true for any variable assign-
ment (mapping free variables to domain element$;cfometimes also calledariable
binding[4]) in any interpretation. Regularity of the role base isg®rved since we can
assume without loss of generality tHatis the least element of (which is feasible
sinceU does not occur in rule heads). Simplicity is not a concernesithby assump-
tion is not a simple role in KBJ RB. In summary, we can assume that the body of
any rule with headR(x, y) has been transformed to contain exactly one maximal path
starting atx and leading tg.

We now describe the step-wise computation ofg§Blnitially, we set KBzg = 0,
and define the set of remaining rules as’'RBRB. The reduction proceeds iteratively
until RB’ is empty. In every step, we select some rBle-> H € RB. Note that by
Lemma 6, there is only a single maximal path of role8jrall role atoms irB are part
of that path, and all but adjacent variables in the path astndi (there are no cycles).
We distinguish various cases:

(1) If B contains two concept atoni3(z) and D’(2) referring to the same variabig
then both atoms are deleted fra@rand a new atom 1 D’)(2) is added.



(2) Otherwise, ifH = C(x) andB = D(x), thenB — H is removed from RB and a
Tbox axiomD C C is inserted into KRg.

(3) Otherwise, iH = R(x, y) andBis of the form{Ry(X, X2), . . . , Ra(Xn, ¥)}, thenB — H
is removed from RB and an Rbox axiorR; o ... o R, C Ris inserted into KR&g.

(4) Otherwise, ifH = R(x,y), and there is somB(2) € B such thatz occurs in some
role atom ofB or H (in first or second argument position), then the following is
done. First, a new role nan&is introduced, and the Thox axioB = 3S.Self is
added to Kkkg. Second, a new variabi € V is introduced, the role atoi®(z Z)
is added tdB, every role atonT (X', 2) € Bis replaced byl (X, Z), and every role
atomT(zy’) € Bis replaced byl (Z,y'). Finally, the atonD(Z) is removed from
B, and ifz = y then the rule head is replaced Bgx, 7).

(5) Otherwise, ifH = C(xX) or H = R(x,y), and there is som&(2) € B such that
z occurs neither irH nor in any role atom oB, then the following is done. IB
contains some atom of the forR(x, t) so there is no atom of the fori'(x) € B,
then defineu = y; otherwise definel := x. Now D(2) in B is replaced by the
concept atonU.D(u).

We verify the correctness of the algorithm in multiple steps

Claim 1 The cases distinguished by the algorithm are exhaustive.

We need to show that all cases that do not satisfy the pretomaif case (1)—(4)
must satisfy the conditions of (5). H = C(x), then the non-applicability of (1) and (2)
ensure that a requirdd(2) € B exists, and by Lemma 6 there are no role atomB at
all. Otherwise, ifH = R(x,y), then non-applicability of (3) ensures that there is some
concept atonD(2) € B: initially and in each construction step, role atoms areagv
required to form a chain as in (3). But then either (4) or (5pthe applicable.

Claim 2 The algorithm terminates after a polynomial number of steps

(1) and (4) strictly reduce the number of concept atoms fasle. ISince no step
increases the number of such atoms in a rule, (1) and (4) csnapplied once for
any concept atom occurring in any role. (2) and (3) reducentiraber of rules, and
again this can happen only a linear number of times. Find@teduces the number of
concept atoms that do not contain variables that occur ih¢fagl. Again, no other step
introduces such atoms and hence (5) is applicable only arlimember of times.

Claim 3 The computed knowledge base KBKBgrg is aSROZQ knowledge base.

We need to verify the correct use of simple and non-simplesrah all axioms.
First note that (4) is the only case where new concept exjoresare introduced that
might violate simplicity restrictions. However, since tihgolved rolesS are new, they
are trivially simple. It remains to verify that all transfoations preserve simplicity of
roles, i.e. that all roles that are simple in KBRB are also simple in KB KBrg. This
is obvious since simple roles can occur only in rules thatraresformed by (2) without
prior modifications.

Claim 4 After termination of the algorithm, KBRB and KBUKBrg are equisatisfiable.
The claim follows by induction if every single step presergatisfiability. Hence
let KBo/RBy and KBy/RB; be the sets KBs/RB’ before and after the application of



one transformation step. We need to show that kKB, U RBy and KBU KB; U RB;
are equisatisfiable.

The cases (1), (2), and (3) clearly yield semantically egjeint results.

For case (4), we find that KB= KB U {D = 3S.Self}. Clearly, KBU KBy U RBy
and KBU KB1 U RBy are equisatisfiable sin&is new. We show that KB KB, URBg
and KBU KB; U RB; are equivalent. To this end, first observe that for any mgdef
KB4, we find thatS? = {(5,6) | § € D¥}. Now let By — Hg andB; — H; denote the
transformed rule before and after the translation step.

For the one direction, consider some interpretaficuch that/  KBUKBURBy.
Thus, for all variable assignmer#s we find By — Ho)’*# = true (where we silently
equate each set of atoms with the conjunction of its elefhdftz is such tha¥#Z(z) #
Z(z) or Z(z) ¢ D7, thenB!* = falseand we find B; — H;)?? = true. Otherwise, we
have thalBé’Z = true by the construction oB;, and hencde-lg’Z = true by assumption.

But then agaierZ = trueand B; — H;)"% = trueas required. This shows thatis a
model ofB; — Hj. Since all other formulae in KB KB; U RBy and KBU KB; U RB;
agree, we find thaf = KB U KB; U RB; as required.

For the other direction, assume tifai KB U KB; U RBj, and again consider any
variable assignmer such thatB;;’Z = true. A variable assignmer’ is defined by
settingZ’(Z) := Z(2), andZ’(x) := Z(x) for all x # Z. It is easy to see thd@!* = true
and hencéd;“ = true by assumption. As before, we conclude thit” = true. But
sinceZ’ agrees withZ on all variables occurring iiig, this impIieng’Z = true and
hence we findl = By — Hg as required. This finishes case (4).

For case (5), we use agalys — H andB; — H to denote the modified rule before
and after the translation step, and Jfebe any interpretation. For the first direction,
assume thal = By — H. Now consider any variable assignmé&nsuch thath’Z =
true. Then, using the notation of (53U.D(u)!* = true. Especially, there is some
domain elemend € 47 such thats € D. A variable assignmer#’ is obtained by
settingZ’(2) := ¢, andZ’(x) := Z(x) for all x # z. ThenD(2)***" = true and, sincez does
not occur in any other atom (by non-applicability of (1) ahd precondition of (5)) we
also findBJ* = true. But thenH”? = H7Z = true by assumption, which shows the
required? £ B; — H.

For the other direction, assume that B; — H, and consider a variable assign-
mentZ such thaB)* = true. ThenD(2)?% = true, and we find thaZ(2) € D. But then
JU.D(u)? for any variableu, and henceB!“ = true. Again this impliesH’? = true
and we concludg £ By — H.

Claim 5 If KB U RB is regular, then so is KB KBgg.

By Definition 5, the RIA created in case (3) satisfies all ctinds of regularity as
long as the transformed ruR — H did (where one might use the same orderi)g
Since regularity clearly is notfiected by cases (1) and (2), it remains to show that (4)
and (5) preserve regularity of the extended knowledge base.

For case (4) this is indeed the case, since the newSaian by chosen to be-
smaller than the rolRin the rule head. Then regularity can only Weated ifS intro-
duces a new initial or final element to the maximal patBjnvhere a role atorR(s, t)
had been in an initial or final position before. However, iis tase the reduced concept
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atomD(2) would be of the formD(x) or D(y), and in both cases addir®(z, z;) does
not &tect regularity by Definition 5.

For case (5) the claim again follows since adding a congépb(u) can dfect
regularity only if B contains an aton®(s, t) that forms the first or last segment of the
maximal path. IfR(s, t) is the first segment, thanis chosen to bg and hence preserves
regularity. Otherwisdr(s, t) must be the final segment, and by setting x regularity
again is preserved.

The above claims together yield the required proof. O

Considering again our introductory example, we arrive atftillowing SRO7Q
axioms (wheres;, S, are new auxiliary roles):

Sj o supervises o Sy C profOf
A worksAt.University = 3S;.Self PhDStudent = 3S,.Self

Based on Theorem 7, we conclude that the problem of checkimgatisfiability of
SROIQ knowledge bases extended with DL rules is decidable, asdertige extended
knowledge base is admissible and regular. Since the irligatian is possible in poly-
nomial time, the worst-case complexity for this problemhie same as for checking
satisfiability of SROZQ knowledge bases.

5 DLRULESIN &L

In this section, we investigate DL rules for the BLL™ [2], for which many typical
inference problems can be solved in polynomial time E&&™ cannot internalise DL
rules, they constitute a true extension of expressivitythéeefore take a flierent ap-
proach than iIlSROZ Q: instead of considering rule bases as an auxiliary set ohasi
that is successively reduced and internalised, we intr@@lcrules as core expressive
mechanism to which all othe2L*" axioms can be reduced. Whi&L*" rule bases
offer many expressive features formerly unavailabl€ ¥+, we show that the com-
plexity of core inference problems remains tractable. \Wepsify our presentation by
omitting concrete domains fro@L** — they are notfiected by our extension and can
be treated as shown in [2].

Definition 8. A role of E£*" is a (non-inverse) role name. AL Rbox is a set of
generalised role inclusion axioms, and &£** Thox (Abox) is @ROIQ Thox (Abox)
that contains only the following concept constructans3, T, L, as well as nominal
classeqa}. AnEL™ knowledge basés the union of arEL** Rbox, Thox and Abox.
An&ELY rule basds a set of DL rules foEL** that do not contain atoms of the form
R(x, X) in the body.

Note that we do not have any requirement for regularity ormpéizity of roles in
the context of€L*". It turns out that neither is relevant for obtaining decitigbor
tractability. The case dR(x, X) in bodies is not addressed by the below algorithm —[12]
significantly extends the below approach to cover this aheroteatures. Since it is
obvious that both concept and role inclusion axioms carctiréde expressed by DL
rules, we will consider onEL*™ rule bases without any addition&lC™* knowledge
base axioms. We can restrict our attentio®©"* rules in a certain normal form:
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Definition 9. An EL** rule baseRB is in normal formif all concept atoms in rule
bodies are either concept names or nominals, all variabies iule’s head also occur
in its body, and all rule heads are of one of the following ferm

A(X) ARA(X) R(x,y)
where Ac NcU{{a} | ae€ N;}U{T, L} and Re Ng. A setB of basic concept expressions
for RBis defineda® := {C | C € N¢, C occurs inRB}uU{{a} | a € N;, a occurs inRB}U
{T,L}.

Proposition 10. AnyEL* rule base can be transformed into an equisatisfiafil& ™
rule base in normal form. The transformation can be done igmpamial time.

Proof. First note that, sinc€L*" supports no inverse roles, individual names in rule
heads cannot always be reduced as described in Section 3ilWkenefore assume
that, initially, rules in RB may contain role atoms of therfoR(a, x) with a € N; (while
all other individual occurrences have been removed as itedoefore).

The transformation algorithm iteratively transforms RB.dach iteration, a rule
B — H that is not in normal form yet is selected from RB, and one efftilowing is
done:

— if H is of the formR(a, y) with a € N;, thenB — H is replaced by the rul8 U
{{a}(x)} — R(x,y) wherex € V is new,

— if H is of the form3dR.C(x) with non-basicC ¢ B, then the ruleB — H is replaced
by two new ruleB — FR A(x) andA(x) — C(X) whereA € N¢ is new,

— if H is of the form C 1 D)(x), then the ruleB — H is replaced by two new rules
B — C(x) andB — D(x),

— if B contains an atom of the for@R.C(X), it is replaced by two new atoni(x, y)
andC(y) wherey € V is new,

— if B contains an atom of the fornC(1 D)(X), it is replaced by two new atont¥(x)
andD(x),

— if B contains an atom of the fori(a, y) with a € Ny, it is replaced by two new
atomsR(x, y) and{a}(x) wherex € V is new.

It is easy to see that the transformation yields an equfidile E£** rule base in
normal form, the size of which is polynomial in the size of tr@ginal rule base. O

When checking satisfiability dfL** rule bases, we can thus restrict to rule bases
in the above normal form. A polynomial algorithm for chedkitlass subsumptions in
&L knowledge bases has been given in [2], and it was shown theit standard infer-
ence problems can easily be reduced to that problem. We resepta new algorithm
for checking satisfiability oEL** rule bases, and show its correctness and tractability.
Clearly, subsumption checking can be reduced to this pnoldgven a new individual
a € Ny, the rule base RB {C(a), {a}(x) 1 D(x) — L(x)} is unsatisfiableff RB entails
C C D. Instance checking in turn is directly reducible to substiompchecking in the
presence of nominals.

Algortihm 1. The algorithm proceeds by computing two sets: aSset inferred “do-
main elements”, and a s& of relevant subclass inclusion axioms that are entailed by
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RB. The elements & are represented by basic concept expressioi®®)fi.e.& C B,
and the inclusion axioms i are of the form CCc D or C C IR D, where CD € &.
Hence, bott€ andS are polynomially bounded by the sizeRB.

Initially, we set& = {{a} | {a} € B} U {T} andS := 0. Now a DL rule is applied
whenever we find that there ig@atchwith the rule body. Given a rule B> H, a match
0 is a mapping from all variables in B to elements&fsuch that the following hold:

— forevery Qy) € B,4(y) C C € S, and
— forevery Ry,2) € B,6(y) C AR6(2) € S.

An algorithm for partially computing matches is given bel@we algorithm now pro-
ceeds by applying the following rules until no possible apglication further modifies
the setS or S:

(EL1) IfCe &, thenS=Su{CCC,CLC T}

(EL2) If there is a rule B~ E(X) € RB, and if there is a match for B with §(x) = 6y,
thenS = SU {0« C E}. Inthis case, if E= C or E = AR.C, then& := E U {C}.

(EL3) Ifthereis arule B— R(x,y) € RB, and if there is a match for B with8(x) = 6
andé(y) = 6y, thenS := S U {6« C IR6,)}.

(EL4) If{CCc{a},DC{a},DE E} c SthenS :=Su{CLCE}.

Here we assume that O,D’ € 8, E € BU {dR.C | C € 8}, and Re Ng. After termi-
nation, the algorithm returns “unsatisfiable” if € &, and “satisfiable” otherwise.

Assuming that all steps of Algorithm 1 are computable in poiwial time, it is
easy to see that the algorithm also terminates in polynatimig, since there are only
polynomially many possible elements férandS, and each case adds new elements
to either set. However, we still have not verified that indival steps can be computed
efficiently, and in particular this is not obvious for the matttecks in (EL2) and (EL3).
Indeed, finding matches in query graphs is known to be NP-éetenn general, and
the tree-like structure of queries is crucial to retain tmbdity. Moreover, even tree-
like rule bodies admit exponentially many matches. But tiaé¢ Algorithm 1 does not
considerall matchesbut only the (polynomially many) possible valuestqf(and6,).
We will now specify an algorithm that checks in polynomiah& whether a matchias
in (EL2) and (EL3) exists. Naturally, this is closely reldte the general task of testing
the existence of homomorphisms between trees and graphs.

Proposition 11. Consider a rule of the form B> C(X) (B — R(X,y)), sets€ and S
as in Algorithm 1, and an elemeéy € & (elementdy, 6, € &). There is an algorithm
that decides whether there is a mateBuch thai(x) = 6x (6(x) = 6x anda(y) = 6y),
running in polynomial time w.r.t. the size of the inputs.

Proof. We first specify a suitable algorithm, which works by propagarestrictions
along the paths of the bod. For every variable in B, a set9(x) of possible values is
computed. Initially, we seB’ := B, and®(x) = & for all x. While B’ is non-empty, the
algorithm does the following:

— Select a variable that is final inB’.
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— Ifthere is some atord(2) € B/, select some sudb(z). Then se®(2) := O(2)N{D’ |
D’'C D e S}andB = B’ \ {D(2)}.

— If there is some aton®(Z,2) € B’, select some sucB(z,2). Then setd(Z) =
O(Z)Nn{D | DC 3S.D’ € S for someD’ € O(2)} andB’ := B' \ {S(Z, 2)}.

Finally, if 6y ¢ ©(X) or ©(2) = 0 for some variable in B, then the algorithm returns
false(i.e. no according match exists). Otherwiselifs of the formC(x), the algorithm
returnstrue.

Otherwise H is of the formR(x,y). The algorithm set®(x) := {64}. If B contains
some patiRy(Xo, X1) . . . Ri(Xn, Xnr1) With X1 = Y @andxg initial in B, then, fori = 1 to
n, do the following:

— SetO(x) = 0(x)N{D| D’ C AR_1.D € S for someD’ € O(x;_1)}.

Finally, the algorithm returnsueif 6, € ©(y), and it returnsalseotherwise.

Claim 1 The algorithm terminates after polynomially many steps.

In the first processing stage, every iteration removes sdome fiomB’, and hence
there are only a linear number of steps. Note that the alguris guaranteed to ter-
minate, i.e. that every atom must be processed at some goingB — H is a DL
rule. Selecting some final variatés naively possible by checking, for all variables
whether some ator8(z z) exists inB’ or not (note thaB’ contains only variables as
terms as it is normalised). One can obviously find an all@) or S(z Z) that is to be
reduced nextin linear time. It remains to check that the asatpns for®(z) and®(z)
can be done in polynomial time. This follows since the irget®ns of polynomially
large sets can be computed in polynomial time, where we haté(z) C & is bounded
by the size off, and that the intersected sets can be computed by a lineavaruh
comparisons with elements &t

For the caséd = R(x,Y), one first needs to find a (unique) path from some initial
Xo toy. The lengtn + 1 of this path is bounded by the size®fand one can construct
the path backwards starting frogpnwhere each next section can be found by a linear
number of comparisons with role atoms Bf Then + 1 iterations ofi can again be
performed in polynomial time each, where three polynomialtge sets are intersected
in each computation step.

Claim 2 If there is a match® with the required properties, then the algorithm returns
true.

Let 6 be the required match with(x) = 6 (andé(y) = 6,). We first show that,
throughout the first processing stag@) ¢ ©(2) for any variablezin B. Initially this is
clearly the case, a&z) € & by definition. For the induction step, it Sices to note that
6(2) € {D’ | D’ € D € S} wheneveD(2) € Bto obtain the result for reduction of concept
atoms. The case of role atoms is similar, and we thus conthat®, = 6(x) € O(X)
and@O(2) # 0 for all zafter the first processing stage.

In the caseH = R(X,y), we can continue the above inductive argument. Clearly,
setting®(x) := 6x = 6(X) preserves the claimed property. For the iteration, we gaina
observe that, for any variable the value off(2) is contained in the sets intersected
when computing(z). Hence we obtaifl, = 6(y) € O(y) as required.
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Claim 3 If the algorithm returnsrue, then there is a matahwith the required proper-
ties.

After the completion of the first processing stage, we coiestr matchy as follows.
For each variablethat is initial in B, select(2) to be any element a®(2), which must
exists sinced(z) # 0 for all z. All other values ob are defined iteratively:

(a) Select some variable such thatd(z) is yet undefined, but there is some atom
S(Z, 2) € B such that(Z) is defined.
(b) Select(2) to be any element of the sé(2) N {D | 6(Z) c AS.D € S}.

We claim that this defines a matétor B. First note that each variab#en B will
indeed be considered in the iteration, based on propertydRDL rules, and that the
selected ator®(Z, 2) is unique by (R2). Second, we claim that the intersectidibp)rns
necessarily non-empty. Indeed, sirig’, 2) must have been considered in the iteration
on B, we know that for anyD € @(Z) there is som® C 3S.D’ € S with D’ € 6(2).
Note that the se®(2) is not changed at any point after the processin§@, z), and
hence we still find some elemefi{l) € O(2) with the required property.

Finally, we show thab is a match. The according condition is clearly satisfied for
all concept atomB(2), since they were explicitly checked for all element®ifz) when
processing this atom. For the case of role atoms, the matcbimdition follows directly
from (b).

This settles the case fét = C(X). ForH = R(x, y), note that the final computation
of O(y) is similar to the iterative construction éfabove, where we consider only one
initial elementxy (which exists due to (R1)), and where all possible choiceg&zh
6(2) are considered. So, #f, € O(y), then there is a way of constructifgas above so
thaté(y) = 6y. This finishes the claim and the proof. O

We can now proceed to show correctness and tractability gdrthm 1.

Lemma 12. Algorithm 1 terminates after polynomial time w.r.t. theestf the consid-
ered rule base.

Proof. As argued above, the algorithm can perform only a polynomighber of it-

erations due to the restricted size&fandS. Steps (EL1) and (EL4) clearly can be

performed in polynomial time. For (EL2) and (EL3), Propimsit11 asserts that it can

be decided in polynomial time whether there is some métsich that(x) = 6« (and

6(y) = 6y). Since there are only polynomially many possible choide ¢andéy), the

preconditions of (EL2) and (EL3) can thus be checked in patyial time as required.
m]

Lemma 13. For any normalisedEL*" rule baseRB, Algorithm 1 returns “unsatisfi-
able” only if RB is unsatisfiable.

Proof. We claim that, for any interpretatioh with 7 = RB, we have thaf £ S and
C’ # 0 for eachC € &. We proceed by induction. The base case is obvious, since
and all nominal classes must not be empty. For the inductiem sve consider each
derivation rule separately.

For (EL1) the claim is immediate, since all generated statémare tautologies.
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For (EL2) and (EL3), we first show the following auxiliary ota(+). Given some
matché for a ruleB — H, letZ be any variable assignment forsuch thaZ(x) € 6(x)*
for all x. Then we find thaB’-* = true. Indeed, for any concept ato@(x) € B, we
haved(x) C C € S (sinced is a match) and thus = §(x) C C by induction hypothesis.
But then als@Z(x) € A(x)? < C’. The case of role atonf¥(x, y) is similar.

Now consider a ruld8 — E(x), a matchy, and concept expressiog as in (EL2).
For anys € 6%, there is some variable assignm&rguch thaZ(x) = 6 andZ(2) € 6(2)*
for all variablesz. This follows from the induction hypothesis th@f # 0 for each
C € &, sinced(2) € &. Using ) we conclude that for any su@) we haveB?- = true,
and therefore als&(x)’* = true sinceZ £ B — E(X). Thus, for anys € 6%, we
conclude that € E?, and thusl 64 C E as claimed. Moreover, this ensures that
E? # 0 and, ifE = ARC, alsoC’ # 0. This shows the claim of the induction f6rand
S.

The case for (EL3) is similar to (EL2).

Finally consider case (EL4). It is easy to see that all basitcept expressions
occurring in axioms ofS are also contained i6. Hence,C andD in (EL4) are non-
empty inZ, and thu<C? = D = {a’}. From this the induction claim ofi is immediate.

In summary we have shown that, whenevee &, we find that1? # 0 for each
modelI of RB. Since this cannot be, this shows the claimed unsdiikfieof RB. O

Lemma 14. For any normalised5L*" rule baseRB, Algorithm 1 returns “unsatisfi-
able” whenevelRB is unsatisfiable.

Proof. We show the contrapositive: if the algorithm does not retunsatisfiable” then
there is some interpretatidnthat is a model of RB. The proof proceeds by constructing
this model.

The domain4” of 7 is chosen to consist of the set of computed eleméntac-
torised to take inferred equalities into account. To thid,erbinary relation- on & that
will serve us to represent inferred equalities is definedHs\is:

C~D if C=D or{CcC{a},DLC{a}} C SforsomeacN,.

We show that- is an equivalence relation @ Reflexivity and symmetry are obvious.
For transitivity, we first note that elements relatedbgre subject to the same assertions
in S. Indeed, rule (EL4) allows us to conclude that, for &)’ € & with C ~ C’,
CC EeSimpliesC’' C E € S (%).

This also yields transitivity of, since{C; C {a},C, C {a}} € S andC; ~ C3
impliesCs C {a} € S and thusC; ~ C3. We use €] to denote the equivalence class of
Ce8&wrt. ~.

These observations allow us to make the following definitbs:

— AT ={[C]ICeé&)
- Ccf = [D]eAI|D|:CeS}foraIICeNC,
—aI = [{a}] for all {a} € B, anda’ := [T] for all {a} ¢ B,

= {([C],[D]) e 4¥ x4* |Cc ARD € S} forall Re Nrg.

Roles and concepts not involveddror S are automatically interpreted as the empty set
by the above definition. The definitions©f andR’ are well-defined due taf above.
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We can now observe the following desired correspondeneedesi/ andS: For any
C,D e &, we find that C] € D’ iff C C D € S (1). We distinguish the following cases
based on the structure bk

-~ D=1.Clearly[C] ¢ L7. ToshownCC L ¢ S,notethaC’C 1 ¢ SforallC’ € &.
Otherwise, the first axiom of the for@ C L could only have been introduced in
(EL2), which contradicts our assumption that &.

- D=T.By(EL1)CC T €S, and of course alsd@] € 7.

— D € N¢. This case follows directly from the definition &t

— D = {a} for somea € N,. If [C] € {a} then [C] = [{a}], and henc& ~ {a}. Since
{a} C {a} € S (EL1), we obtairnC C {a} € S from ().

Conversely, ifC C {a} € S, thenC ~ {a} and hencd[C]} = {[{a}]} = {a}’ as
required.

Finally, it only remains to show thdt is indeed a model of RB. We argue that each
rule B — H of RB is satisfied by. Thus consider some variable assignmérstich
thatB?Z = true. This means that for all(x) € B (R(x,y) € B), we find thatz(x) € C*
((Z(xX), Z(y)) € RY). Now assume that(x) = [D] (Z(y) = [D’]). Now for concept atoms
C(x), we concludé C C € S by (}). For role atom$(x, y), we obtainD C dR.D’' € S
as a direct consequence of the definitioryoSince this reasoning applies to all atoms
in B, there must be a matehsuch thaZ(x) = [6(X)] for all variablesx of B.

Now consider the rule hedd. If H is of the formC(x), then by (EL2) we find that
6(X) C C € S. If C € & we can concluded[x)] € C’ by (f), and sincez(x) = [(X)],
we find thatZ = B — H. Otherwise, ifC = 3IRD (thusé(x) C dRD € S), we
find thatD € &, again by (EL2). Hence, according to the definitionfgfwe have
([6(X)].[D]) € R, and also P] € D’ where we usef( again. This shows9[x)] € C*
as above, and hendeE= B — H as required.

The case of rule heads of the folR(x, y) is treated similarly, using (EL3). O

Combining the above results, we obtain the main result sfgaction:

Theorem 15. Satisfiability checking, instance retrieval, and compgtifass subsump-
tions forEL™ rule bases is possible in polynomial time in the size of the base.

6 DLP2

Description Logic Program¢DLP) have been proposed as a tractable knowledge rep-
resentation formalism for bridging the gap between DL andr(hilogic programming
[7]. This clearly suggests further extension with DL rulasd we will see below that
reasoning with this extension is still possible in polynahtime. Moreover, various
further features oSBROJIQ can easily be included as well, and thus we arrive at a DL
rule language that might be dubbed DLP 2 in analogy to the ioggiandardisation of
the extended OWL 2 based &ROZQ.

DLP has been defined in various ways, and a detailed syntatéiacterisation
is found in [13]. Essentially, however, DLP can be charasgel as the fragment of
SHOIQ that can entail neither disjunctive information nor thesgamce of anonymous
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individuals. The former condition has been extensivelgigd in the context of Horn

description logics [14], and rather complex syntactic deéfins can be given to char-
acterise all admissible axioms of such logics. Here, we edopuch simpler definition

that focusses on the essential expressive features wigmagimpassing all alternative
syntactic forms of DLP axioms:

Definition 16. Roles of DLP are defined as8R0O7Q, including inverse roles. BLP
body concepis any SROIQ concept expression that includes only concept names,
nominals/1, 3, T, and L. ADLP head conceps anySROIQ concept expression that
includes only concept names, nominalsy, T, L, and expressions of the fogi RC
where C is a DLP body concept.

A DLP knowledge basis a set of Rbox axioms of the formtRS and Ro RC R,
Tbox axioms of the form € D, and Abox axioms of the form(8) and Ra, b), where
C e Cis abody concept, [& C is a head concept, and e N, are individual names.
A DLP rule baseas a set of DL rules such that all concepts in rule bodies ardybo
concepts, and all concepts in rule heads are head concepts.

A DLP 2knowledge base consists of a DLP knowledge base that adalitfjomight
contain Rbox axioms of the forbis(R, S) and Asy(R), together with some DLP rule
base.

Note that neither regularity nor simplicity restrictiorgdy in DLP. It is immediate
that DLP Rbox and Tbox axioms can directly be expressed by Diés. The same
holds for Abox axioms: though we cannot use the common ta¢insl of R(a, b) into
{a}(x) —» AR{b}(X), the DLP rule{a}(x) A {b}(y) — R(X,y) serves the same purpose.
Hence we can restrict our further considerations to DLP 2Wedge bases into which
all knowledge base axioms other thais(R, S) andAsy(R) have been internalised. The
core observation of this section is as follows:

Proposition 17. Any DLP 2 knowledge ba$éB can be transformed into an equisatis-
fiable set of function-free first-order Horn rules with at rfige variables per formula,
and this transformation is possible in polynomial timetwthe size oKB.

Proof. We use RB to denote the DLP rule base of KB. The transformationeeds in
multiple stages, that we will present and verify indepertigen

First of all, we expand DL concept atoms as done in Propositid. Individual
names in argument positions are not a problem now — they saibukept throughout
the translation. The transformation algorithm iteragwveansforms RB until further
iterations do no longer modify RB. In each iteration, thédwaing steps are applied to
each ruleB — H in RB:

— if H is of the formYR.C(x) such that is no concept name, then the ride— H is
replaced by two new ruleB — YR.A(X) andA(X) — C(X) whereA € N¢ is new,

— if H is of the form<1 R.C(x) such thaC is no concept name, then the rilde- H
is replaced by two new ruleB — <1RA(X) andC(x) — A(X) whereA € N¢ is
new,

— if H is of the form C 1 D)(x), then the ruleB — H is replaced by two new rules
B — C(x) andB — D(x),
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— if B contains an atom of the for@R.C(X), it is replaced by two new atoni(x, y)
andC(y) wherey € V is new,

— if B contains an atom of the fornC(1 D)(X), it is replaced by two new atont¥(x)
andD(X).

Again it is easy to see that this transformation preservésfisdility of RB in each
transformation step. The number of applicable steps is tedrby the size of RB:
expansion of rule heads may generate new rules for eachradigjn operator occurring
in rule heads, but their number is linearly bounded, and esipa of body atoms may
only incur a linear increase in size for each rule body.

We thus arrive at an equisatisfiable rule base RB all of whoseept atoms are
concept names and nominals, with the only exception of rah of the fornYR.A
and<1RAwith A e Nc.

We proceed by reducing the structure of rule bodies. Givemesaule bodyB and
termt, we defineB; := {C(t) | C(t) € B} for some ternt. In each iteration step of the
reduction, select some rule — H in RB that contains more than three variables, and
do one of the following:

() If thereis soméR(t,u) € B such thau is final andu does not occur itd, then the
rule B — H is replaced by two new rule8(\ (B, U {R(t,u)})) U {C(t)} — H and
By U {R(t, u)} — C(t), whereC € N¢ is a hew concept name.

(2) If there is someéC(t) € B such that occurs neither irH nor in any role atom of
B, then the ruleB — H is replaced by two new rule®(\ B;) U {D(u)} - H and
B: — D(u), whereu # t is some arbitrary term ifl, andD € N¢ is a new concept
name.

(3) If H = R(t,u) and there are role aton&v, V'), S’(V/,u) € B but no further role
atom of the formS”(v,v’) € B, thenB — H is replaced by two new rule8(\
(By U{S(v,V),S'(V,u)})) UT(v,u) - HandBy U {S(v,V), S'(V,u)} = T(v,u),
whereT € Ng is a new role name.

This iteration is repeated until no further changes octis.dasy to see that the process
terminates after polynomially many steps: every step resa@toms from an existing
rule body, and none of the generated rules has more thanvariedles.

Claim 1 After the above translation, all rules in RB have at mostdtvariables in the
body.

For a contradiction, suppose that there is some Bule H with at least four vari-
ables inB. By assumption, none of the three cases of the translatiapgkcable. Due
to case (1), for any role atoR(t, u) € B whereu is final, u must occur inH (sinceH
contains at most one non-initial element by (R3)) and is uai§). Thus, by case (2),
all variables inB must also occur in role atoms or k.

Now assuméH is a concept atom. Ther cannot contain any final that occurs in
a role atomR(t, u) € B (), and hencd3 contains no role atoms. But théhcontains
at most one variable, which would contradict our assumpfithus assume that is a
role atom. Based on our conclusiaf) thatB contains at most one final term that is part
of some role atom, we conclude that the role atomB afust form a chain. But then,
assuming thaB contains at least four variables, there must be at8(ms/), S’(V, u) €
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B as required by (3). Since (3) was assumed to not be appliddiglee must be some
atomS” (v, Vv”) as in the condition of (3). Sinc&’ # u cannot be final, and sinaeis
the only final element in role atoms Bf there must be some path fraffito u. But this
contradicts (R2) and hence refutes the initial assumptiothe number of variables in
B.

Claim 2 The above translation preserves satisfiability of RB.

This can be shown by a simple induction, given that all pdsditansformation
steps preserve satisfiability. Thus consider step (1), #Bep H is the processed rule,
andB; — H andB; — C(t) denote the generated rules. Clearly, addtag— C(t) to
RB preserves satisfiability sin€zis new. Thus it remains to show equisatisfiability of
RB; := RBU{B, — C(t)} and RB := RBU {B, — C(t), By - H} \ {B — H}.

Thus consider some interpretatignsuch thatZ | RB;. Then there is some in-
terpretationZ” with 7’ | RB; andC?" = {6 € 47 | BS** = true for some variable
assignmeng with t-% = §}. A suitableZ’ can be obtained froni by minimising the
extent ofC while preserving all other aspects of the interpretatiomictv can be done
sinceC is new. Note thaf” = B, — C(t) by definition. We claim thai” = RB,. Thus
assume thaB; - = truefor some variable assignmet ThenC(t)”"? = true and thus
t!? e CI'. By the assumptions o@’, we find that there is some variable assignment
Z’ suchthaBl“ = truewheret’'Z = t"?. Now observe that, by constructioB, and
B; contain no common variables, other than possthiy t is a variable). Thus there
is some variable assignmenft such thatz”(x) = Z(x) for any variablex in B; and
Z"(X) = Z'(X) for any variablex in B,. But then B, U B,)Y**" = true. As defined in
(1), (B U By) = B and thusB’?" = true, and we can conclude?#" = true since
I’ E B — H. By definition,Z andZ” agree on all terms itd and thus we obtain
H?"Z = trueas required. Sinc& was arbitrary, this shows that= B; — H, and hence
I’ E RB,.

For the other direction, consider some interpretatiosuch that7 £ RB,. We
claim that7 | RB;. Thus assume th&’-? = true for some variable assignment
Then aIsoB‘ZT*Z = true asB, ¢ B, and henc&(t)’* = true. But thenBllr’Z = true and
thusH?+? = true as required.

The cases (2) and (3) can be treated in a similar fashion,endwgin it is essential
that each case completely eliminates some term from thefobamed rule, so that the
required merging of variable assignmeBtsandZ” is indeed possible.

Finally, we can rewrite the transformed rules and axioms é@guivalent first-order
formulae. After the above transformations, RB containy @ales with at most three
variables in the body, and with heads of one of the followioigrfs:R(t, u), A(t), {a}(t),
YR.A(t) and<1RA(t) (with A € Nc). Concept atoms in rule bodies contain only concept
names and nominals. Now consider a new binary predicadad letP be the logic
program consisting of the following rules (as before, wetamiversal quantifiers from
first-order rules):

- X=X C)AXx~y — C(y)
YA -  Yy=xX Rx,2Ax=y — R(Y,2
X2YAYy~Z > X=Z RzX)Ax=y — R(zY)
R(x.Y) - R(Y,X%) R (x,y) — R(Y,X)
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instantiated for every concept narf@eand role namd occuring in KB. ClearlyP
is still polynomial in size. We now extenfd with translated rules from RB. Thus, for
any ruleB — H € RB, do the following:

replace every concept atom of the fofaj(t) in B — H with a ~ t,

if H=VYRA(), replaceH by A(x) and addR(t, X) to B, wherex is a new variable,
if H=<1RA(t), replaceH by x ~ yand addR(t, X), R(t, y), A(X), A(y)} to B, where
x andy are new variables,

addB - Hto P.

It is easy to see that the above translations preserve thengiesiof each rule, and
that each resulting rule contains at most five variablesalinwe translate all Rbox
axioms of KB to rules as follows:

— Dis(R, S) is translated td&R(x, y) A S(x,y) —.
— Asy(R) is translated tdR(x, y) A R(Y, X) —.

This finishes the proof. O
This establishes the tractability of DLP 2:

Theorem 18. Satisfiability checking, instance retrieval, and compgtifass subsump-
tions for DLP 2 knowledge bases is possible in polynomiad fimthe size of the knowl-
edge base.

Proof. First note that instance retrieval and class subsumptinrbeaeduced to satis-
fiability checking just as in the case 8f£"*. Now to check satisfiability of a DLP 2
knowledge base, it is first transformed into an equisatilfiabt of function-free first-
order Horn rules as in Proposition 17. The satisfiabilityuaftsa set of formulae can be
checked in polynomial time, since any Horn logic programeisiantically equivalent
to its grounding(the set of all possible ground instances of the given rusgd on the
occuring individual names). For a program with a boundedmemn of variables per
rule, this grounding is bounded by i", wherei is the number of individual names and
r is the number of rules in the program. Finally, the evaluaté ground Horn logic
programs is known to bB-complete. O

7 CONCLUSION

We have introduce®L rules as a rule-based formalism for augmenting description
logic knowledge bases. For all DLs considered in this pap8ROIQ, EL£, and
DLP - the extension with DL rules does not increase the waase complexity. In
particular,&L** rules and the extended DLP 2 allow for polynomial time reasgpn
for common inference tasks, even though DL rules do indeedge added expressive
features in those cases.

The main contributions of this paper therefore are twofBidstly, we have extended
the expressivity of two tractable DLs while preserving tHaizourable computational
properties. The resulting formalisms 8f£** rules and DLP 2 are arguably close to
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being maximal tractable fragments SRO7Q. In particular, note that the union of
&L and DLP is no longer tractable, even when disallowing numéstrictions and
inverse roles: this follows from the fact that this DL contathe DL Horn¥£LE which
was shown to be ¥ Tmme-complete in [14].

Secondly, while DL rules do not truly add expressive powe R 7 Q, our charac-
terisation and reduction methods for DL rules provides astfas developing ontology
modelling tools. Indeed, even without any further extensibe upcoming OWL 2 stan-
dard would support all DL rules. Hence OWL-conformant tards choose to provide
rule-based user interfaces (as done for Protégé in [8]),raledbased tools may of-
fer some amount of OWL support. We remark that in the case d® BhdSL**, the
conditions imposed on DL rules can be checked individualiysfich rule without con-
sidering the knowledge base as a whole. Moreover, in ordsimiplify rule editing,
the general syntax of DL rules can be further restrictedauitisacrificing expressivity,
e.g. by considering only chains rather than trees for rutds We thus argue that DL
rules can be a useful interface paradigm for many applindi#bds.

Our treatment of rules i&8L** and DLP 2 — used only for establishing complexity
bounds in this paper — can be the basis for novel rule-basstmnéng algorithms for
those DLs, and we leave it for future research to exploreapjgoach.
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